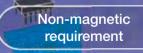


Bearings, Ball Screws and NSK Linear Guides, for Special Environments

The SPACEA™ Series—responding to extreme, special environments

The NSK SPACEA™ Series was developed with vacuum lubrication technology, materials technology, and thin-film technology for space exploration equipment.

Our lineup of bearings, ball screws and NSK Linear Guide® for special environments will meet the strict requirements for harsh operating conditions, offering high functionality and quality. The high-quality SPACEA™ Series is applicable in vacuum, corrosive, clean, high-temperature, non-magnetic, and radiation-resistant environments, among others.


The SPACEA™ Series is adaptable to a wide variety of applications, including machinery for semiconductors, LCDs, hard disk production, pharmaceutical/cosmetics production, and ceramics/chemistry/optical apparatuses. The Series consists of optimum bearings, ball screws and NSK Linear Guide® that can be applied to demanding operating environments.

- Food processing machinery
- Medical instrument

- Food processing machinery
- Woodworking machinery
- Tire buffs
- Welding lines
- Graphite processing machinery
- Laser machinery



- Electron beam rendering devices
- Electron beam aligners
- Inspection equipment

- Production machinery for semiconductors, LCD panels, PDPs, and hard disks
- Vacuum evaporation devices
- Vacuum robots
- Space exploration equipment

 Cleaning equipment for semiconductors, LCD panels PDPs, and hard disks

- Food processing machiner
- Conveyors

Application

- Chemical plants
- Plating facilities
- Etching equipment

Application

Clean environments

Corrosive

environments

- Transporters in clean rooms
- Production machinery for semiconductors and LCD panels, and conveyors in machinery
- Hard disk production machinery
- Solar cell product nachinery

High-temperature environments

- Kilns
- High-temperature conveyors
- Semiconductor production machinery
- Kiln cars

applications.

Table of Contents

SPACEA™ Series·····	·····P2–7
Global Network ·····	P4–5
Research and Development	·····P6–7
SPACEA™ Bearings ·····	···· A1–A72
Table of Contents of SPACEA™ Bearings·····	····· A1–A2
Inventory	····· A3–A4
Selection Guide	····· A5–A8
Dimensions, Accuracy and Availability	··· A9–A28
Product Information ·····	·· A29–A66
Applications of SPACEA™ Series Bearings······	·· A67–A72
SPACEA™ Series Ball Screws and NSK Linear Guide® ·	B1–B34
Table of Contents of SPACEA™ Series Ball Screws an NSK Linear Guide®	d ······B1–B2
Inventory ·····	····· B3–B4
Selection Guide	····· B5–B6
Types and Specifications	····· B7–B8
Dimensions and Availability	····B9–B12
Product Information ·····	··B13-B32
Applications of SPACFA™ Series Ball Screws and NSK Linear Guide® ····	·· B33–B34

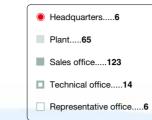
NSK Global Network

NSK's global network is the key to our ability to develop innovative products that incorporate the latest technologies.

The network connects each sales branch, distribution center, production facility, and technology center and enables us to gather the latest information from each location.

Data is instantly accessible to every part of the network, resulting in products of the highest quality.

Our global system also includes activities such as receiving and processing orders, shipping products, and supplying technical support.


No matter how difficult or complex the challenge, NSK is able to respond immediately.

NSK's global network means excellent products and superior customer service.

NSK has established a communication system that links the major markets of the world in Europe, Asia, Japan, and the Americas. We use this highly developed system to share information, in real time, related to changes and trends in each market. As a result, we can react quickly to meet changing customer needs, supplying the best, high-quality products. Our global network makes NSK a truly global company. We are able to transcend borders and other restrictions to meet the needs of our customers around the globe.

EUROPE/AFRICA						ASIA/OC
U.K.	1	4	2	1		Singapor
Germany		1	2	1	2	Indonesi
France			1			Thailand
Italy			1			Malaysia
Holland			1			Philippin
Spain			1			Vietnam
Poland		4	3	1		India
Russia			1			Australia
Turkey			1			New Zea
U.A.E.			1			Japan
South Africa			1			China

ASIA/OCEANIA						THE
Singapore	1		2			U.S
Indonesia		3	2			Car
Thailand		2	3	1		Me
Malaysia		2	4			Bra
Philippines					1	Per
Vietnam			1		1	Arg
India	1	4	8			
Australia			4			
New Zealand			1			
Japan	1	22	36	6		
China	1	12	18	1	1	
Couth Koroo			^	4		

THE AMERICAS					
U.S.A.	1	7	10	1	
Canada			3		
Mexico		1	1		
Brazil		1	5	1	
Peru			1		
Argentina			1		

December 2015

4 NSK

NSK Research and Development

Extensive commitment to research and development through a network of four bases in the United States, Europe, and Asia, with Japan as the nucleus.

American Technology Center

SPACEA™ Series bearings

SPACEA™ Series bearings, ball screws and NSK Linear Guide™ are technology-driven products that continue to evolve, supported by advanced technologies developed in the NSK R&D centers. Lubrication technology, materials technology, and evaluation technology are integrated to create new SPACEA™ products.

Lubrication technology

Clean lubricant DFO Clean greases: LG2, LGU Special solid lubricant Vacuum high-temperature solid lubricant

Materials technology

High corrosion-resistant, long-life stainless steel: ES1 High corrosion-resistant, high hardness stainless steel: ESZ High corrosion-resistant, non-magnetic stainless steel: ESA Fiber-reinforced, high corrosion-resistant fluororesin materials High corrosion-resistant ceramic materials High hardness titanium alloys

Evaluation technology

In-vacuo rotation/direct-acting tester Clean environment rotation/direct-acting tester Corrosive environment bearing endurance tester Dust-contaminated environment direct-acting tester

6 NSK

European Technology Centre (England)

Wide range of product variation with high quality and high functionality

NSK's SPACEA™ Series bearings for special environments have a wide array of product variation applicable to vacuum environments, corrosive environments, clean environments, sanitary environments, high-temperature environments, dust-contaminated environments and non-magnetic requirement. The SPACEA™ Series offers high quality and high performance in severe operating environments, throughout a wide range of applications and in all kinds of machines and apparatuses.

Optimal bearings for particular applications can be found in the SPACEA™ Bearing Selection Guide on pages A5–A8.

Table of Contents of SPACEA™ Bearings

9	Inventory	······ A3–A
	Selection Guide	A5–A
	Dimensions, Accuracy and Availability	A9–A2
	Specifications, Operating Instructions, and Technical Data	
	1. Food Grade Grease-Packed Bearings ·····	A29–A3
	2. Stainless Steel Bearings ·····	····· A31–A3
	3. Stainless Steel Angular Contact Ball Bearings	A3
	4. Stainless Steel Self-Aligning Ball Bearings	A3
	5. Molded-Oil™ Bearings (For corrosive environments, For sanitary environments) ·······	····· A35–A3
	6. Hybrid Bearings ·····	····· A37–A3
	7. Corrosion-Resistant Coated Bearings	A39–A4
	8. ESZ Bearings	····· A41–A4
	9. ESA Bearings	····· A43–A4
	10. All-Ceramic Bearings	
	11. Aqua-Bearing [™] ·····	
	12. LG2/LGU Grease-Packed Bearings	····· A49–A5
	13. DL2 Grease-Packed Bearings	
	14. E-DFO Bearings, V-DFO Bearings	
	15. YS Bearings with Self-Lubricating Cage	
	16. KPM Grease-Packed Bearings	
	17. YS Bearings with Spacer Joints	
	18. SJ Bearings·····	
	19. Titanium Alloy Bearings	
	20. Molded-Oil™ Bearings (For Dust-Contaminated Environments)	····· A65–A6
3	Applications of SPACEA™ Series Bearings	Δ67_Δ7

A SPACEA[™] Series Bearings

Inventory

NSK's SPACEA™ Series bearings for special environments are optimal for applications in operating environments that are too severe for ordinary bearings, such as semiconductor/FPD/hard-disk production machinery, food processing machinery, medical/cosmetics production machinery, and ceramics/chemistry/optical apparatuses.

Sanitary environments

For food processing machinery

- · Food grade grease-packed bearings
- Molded-Oil[™] bearings with food grade lubricant

Food grade grease-packed bearings

Vacuum environments

Clean

- · DL2 grease-packed bearings
- DFO bearings
- · YS bearings with self-lubricating cage

High-temperature

- · YS bearings with spacer joints
- · SJ bearings

Non-magnetic

- · ESA bearings
- · Titanium alloy bearings

YS bearings with spacer joints

Clean environments

- Normal atmosphere, room temperature
- LG2 grease-packed bearings
- · LGU grease-packed bearings
- Normal atmosphere, high-temperature/ vacuum, medium-temperature
- · DL2 grease-packed bearings
- Vacuum, high-temperature
- · YS bearings with self-lubricating cage
- · DFO bearings

Clean grease-packed bearings

High-temperature environments

- Normal atmosphere, high-temperature
- · KPM grease-packed bearings
- Vacuum, high-temperature
- YS bearings with spacer joints
- SJ bearings

DFO bearings

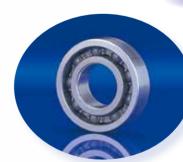
Corrosive environments

Water environments

- · Stainless steel bearings
- Molded-Oil[™] bearings
- Hybrid bearings
- · Corrosion-resistant coated bearings
- Alkali and weak acid environments
- · ESZ bearings
- · ESA bearings

Strong acid and reactive gas environments

- · Aqua-Bearing™
- · All-ceramic bearings



Stainless steel bearings

Aqua-Bearing™

Titanium alloy bearings

Non-magnetic requirement

- Non-magnetic (relative permeability 1.01 or less)
- ESA bearings
- Completely non-magnetic (relative permeability 1.001 or less)
- · Titanium alloy bearings
- All-ceramic bearings

Molded-Oil™ bearings

Dust-contaminated environments

- Normal atmosphere, dust-contaminated
- · Molded-Oil™ bearings

1. Select the most appropriate bearing with the following selection flow chart.

Follow the operating instructions that are 1 Select the group of 2 Find the bearings that suit 3 Select the bearing most appropriate in terms of bearings appropriate for your operating conditions. availability and price. your operating environment provided. and application.

												② C)peratir	ng condi	tions								
		①		Degre	ee of va	cuum	Op	erating t		ure			· nliness			rotationa d _m n (2)	l speed	Liı	miting loa	ad	3 Price	3 Availability	④Specifications
	0	perating environment	Product name	Normal atmosphere	Pa ≥10-⁴	≥10-8	≤100	≤200	C ≤300	≤400	10	00–1 000	100	10	≤20 000		≤150 000	≤1%	≤2%	≤5%	comparison	, wanasinty	·Operating instructions ·Technical data
nts			H1R grease-packed bearings	auriospriere			120°C									3	50 000			5%	Low		
onme		_	H3G grease-packed bearings				90°C										00 000			5%		Page A11-A12	Page A29-A30
/ envir	For	food processing machinery	High-temperature H1B grease-packed	0				200°C									00 000			5%			
Sanitan		_	bearings Molded-Oil™ bearings with food grade lubricant	0			60°C								For deta	ils, please			1 +	to 5%	High -	Page A18	Page A35-A36
Š		Classification of air							Fax data	ls, please					page A3						Low		
		cleanliness: Class 100–1 000	DL2 grease-packed bearings	10)-⁴Pa			200°C	refer to p	age A51.		•				50 000				5%	20"	Page A23–A24	Page A51-A52
	Clean		V-DFO bearings					200°C	For detai	ls, please				•					2%			Page A25	Page A53-A54
	ō	Classification of air cleanliness: Class 10–100	E-DFO bearings		10-7	Pa	150°	С	refer to p	age A54.					20 000					5%		r ago / Eo	1 4907100 7101
Vacuum			YS bearings with self-lubricating cage					200°C										For detai page A55	s, please re	efer to	High	Page A26	Page A55-A56
Vacı	High- temperature	Up to 400°C	SJ bearings		1	0-8Pa				400°C					00,000			For detai page A61	s, please re	efer to	Low	Page A28	Page A61-A62
	Hig	Up to 350°C	YS bearings with spacer joints		1	0-8Pa			350°0	2					20 000			For detai page A59	s, please re	efer to	High	Page A26	Page A59-A60
	i Si		ESA bearings																2%		Low	Page A21	Page A43-A44
	Non	Completely non-magnetic (relative permeability 1.001 or less)	Titanium alloy bearings		10 ⁻⁶ Pa		150°	C							20 000			1%	,		High	_	Page A63-A64
		High-humidity environments	Stainless steel bearings				80°C									1	50 000			5%	Low	Page A13-A16	Page A31-A32
	ter	Matau anyan inamaya d	Molded-Oil™ bearings				60°C								For deta	ils, please 5.	refer to		1 t	to 5%		Page A18	Page A35-A36
	Water	Water spray, immersed	Hybrid bearings				1500								00.000				00/			D 440	Page A37-A38
orrosive		Water, sterilization liquid	Corrosion-resistant coated bearings				150°								20 000				2%			Page A19	Page A39-A40
Corre		Weak acid and alkali	ESZ bearings	0			1500								00.000				00/			Page A20	Page A41-A42
		environments	ESA bearings		10⁻6Pa		150°								20 000				2%		High	Page A21	Page A43-A44
	St	trong acid and reactive gas	Aqua-Bearing™				100°C								00.000			1%			Low	Page A22	Page A47-A48
		environments	All-ceramic bearings				150°	С							20 000			,		5%	High	Page A21	Page A45-A46

Remarks: Please consult NSK about a unidentified point about beaing specification.

⁽¹⁾ Cleanliness may vary depending on operating conditions, surrounding structures and other factors. (2) $d_{\rm m}n$ = (bore diameter of bearing, mm+outer diameter of bearing, mm) ÷ 2 × rotational frequency (min) · 1

⁽³⁾ The limiting load is estimated based on the endurance (total rotational frequency) corresponding to 10⁷ as a guideline. P: equivalent load (N), C_H: load rating (N) of the stainless bearing (The durability is different by operating environment or conditions.)

B SPACEA™ Bearing Selection Guide-II

1. Select the most appropriate bearing with the following selection flow chart.

1 Select the group of bearings appropriate for your operating environment and application.

2 Find the bearings that suit your operating conditions.

3 Select the bearing most appropriate in terms of availability and price.

Follow the operating instructions that are provided.

				② Operating conditions																		
	① Operating environment	Product name	Degre	ee of vac Pa	cuum	Оре	erating t	emperat C	ture		Cleanliness ⁽¹⁾			Limiting	rotationa d _m n ⁽²⁾	al speed	Limiting load P/C _H ⁽³⁾		ad	3 Price	3 Availability	·Specifications ·Operating instructions
	Operating crivilerinierit	Troduct name	Normal atmosphere	≥10-4	≥10-8	≤100	≤200	≤300	≤400		100–1 000	100	10	≤20 000	≤50 000	≤150 000	≤1%	≤2%	≤5%	comparison		·Technical data
	For use in normal atmosphere only	LG2/LGU grease-packed bearings						(LG2) C (LGU)			•			E	0 000				5%	Low	Page A23-A24	Page A49-A50
	From normal atmoshere up to vacuum	DL2 grease-packed bearings	10)-⁴Pa		20	00°C	For detail refer to pa	s, please age A51.						000				3%		Page A23–A24	Page A51-A52
Clean		V-DFO bearings				20	00°C	For detail	s. please									2%			Page A25	Page A53-A54
	Low outgas and low particle emissions	E-DFO bearings		10 ⁻⁷ F	Pa	150°C		refer to pa	age A54.					20 000					5%		i age A23	1 age 735-754
		YS bearings with self-lubricating cage				20	00°C										For deta	ils, please 5.	refer to	High	Page A26	Page A55-A56
nre	For use in normal atmosphere only, up to 230°C	KPM grease-packed bearings					230°C							5	0 000				5%	Low	Page A27	Page A57-A58
High- nperat	From normal atmosphere up to 10° Pa, up to 400°C	SJ bearings		10	0-8Pa			4	00°C					20 000			For deta	ils, please 1.	refer to		Page A28	Page A61-A62
ter	From normal atmosphere up to 10° Pa, up to 350°C	YS bearings with spacer joints		10	0-8Pa			350°(20 000			For deta	ils, please 9.	refer to	High	Page A26	Page A59-A60
etic	Non-magnetic (relative permeability 1.01 or less)	ESA bearings		10-6Pa														2%		Low	Page A21	Page A43-A44
1-magnetic	Completely non-magnetic (relative permeability 1.001 or	Titanium alloy bearings		10°Pa		150°C								20 000			1%				-	Page A63-A64
Non	less)	All-ceramic bearings																	5%	High	Page A21	Page A45-A46
Dust- contaminated	Dust, wood waste, etc.	Molded-Oil™ bearings				60°C								For detai	ls, please r	refer to		1 to	0 5%	_	Page A66	Page A65-A66

(1) Cleanliness may vary depending on operating conditions, surrounding structures and other factors.
(2) d_mn = (bore diameter of bearing, mm+outer diameter of bearing, mm) ÷ 2 × rotational frequency (min)⁻¹

Remarks: Please consult NSK about a unidentified point about beaing specification.

⁽³⁾ The limiting load is estimated based on the endurance (total rotational frequency) corresponding to 107 as a guideline. P: equivalent load (N), $C_{\rm H}$: load rating (N) of the stainless bearing (The durability is different by operating environment or conditions.)

of SPACEA™ Series Bearings

1. Stainless steel-based SPACEA™ Series Bearings

Accuracy of boundary dimensions and running accuracy

Note: The dimensional tolerance of the bore and outside diameter for corrosion-resistant coated bearings may deviate from the JISO standard for coating thickness (maximum 5 µm in diameter).

Dimensional accuracy of bore diameter of inner ring

Unit: um

bor	ninal bearing re diameter d (mm)	diameter dev of single b	ne mean bore viation (Deviation pore diameter)	(Ou	ore diameter t-of-roundn V _{dp}	ess)		Mean bore diameter variation (Cylindricity) V_{dmp}		
		4	$arDelta_{dmp}$	Didiffetel Series				Gp		
				7, 8, 9	0, 1	2, 3, 4				
Over	Incl	High	Low		Max			Max		
2.5	10	0	-8	10	8	6		6		
10	18	0	-8	10	8	6		6		
18	30	0	-10	13	10	8		8		
30	50	0	-12	15	12	9		9		

Dimensional accuracy of outside diameter of outer ring

Unit: µm

Nominal	bearing		e mean outside	Mea	(Out-of-re	iameter varia oundness) D _p	ation	Mean outside		
outside (of single ou	viation (Deviation utside diameter) dD _{mp}	Оре	en type bear	rings	Sealed/ Shielded	diameter variation (Cylindricity) V _{dmp}		
	<i>⊒</i> −πp				Diamete	* amp				
				7, 8, 9	0, 1	2, 3, 4	2, 3, 4			
Over	Incl	High	Low		Max			Max		
6	18	0	-8	10	8	6	10	6		
18	30	0	-9	12	9	7	12	7		
30	50	0	-11	14	11	8	16	8		
50	80	0	–13	16	13	10	20	10		

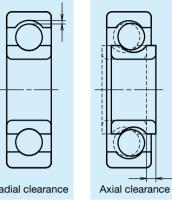
Dimensional accuracy of inner/outer ring width

Unit: µm

Nominal bore di d (n	ameter		single ring width $_3$ or $_2C_8$	Ring width variation (Max-min) <i>VB</i> _S or <i>VC</i> _S
Over	Incl	High	Low	Max
2.5	10	0	-120	15
10	18	0	-120	20
18	30	0	-120	20
30	50	0	-120	20

Running accuracy

Unit: µm


•				σ μ
Nominal bore di d (n	ameter	bearing	t of assembled inner ring	Radial runout of assembled bearing outer ring $k_{\rm ea}$
Over	Incl	High	Low	Max
2.5	10	1	0	15
10	18	1	0	15
18	30	1	3	20
30	50	1	5	25

Bearing internal clearance and the standard value

Internal clearance of bearings is the amount that one ring, either the inner or outer, can be displaced relative to the other ring when one is fixed and the other is displaced either vertically or horizontally. The amount of displacement in the radial plane is called radial clearance, while the amount of displacement in the axial plane is called axial clearance. Clearance is measured by adding a specific measuring load to a bearing in order to obtain a stable measured value. As a result, the measured clearance value, or measured internal clearance, becomes slightly larger than the theoretical internal clearance value (also known as geometrical clearance in the case of a radial bearing). The difference is known as the elastic deformation volume, or approach amount.

Theoretical internal clearance is derived by compensating the increment of clearance caused by elastic deformation.

Internal clearance of bearings prior to installation is usually defined by the theoretical internal clearance value.

Radial internal clearance of nominal bearing bore diameter

Unit: µm

	bearing ameter	Clearance											
	nm)		C2	(CN	(23	C	24	C5			
Over	Incl	Min	Max	Min	Min Max		Min Max		Max	Min	Max		
10 only		0	7	2	13	8	23	14	29	20	37		
10	18	0	9	3	18	11	25	18	33	25	45		
18	24	0	10	5	20	13	28	20	36	28	48		
24	30	1	11	5	20	13	28	23	41	30	53		
30	40	1	11	6	20	15	33	28	46	40	64		
40	50	1	11	6	23	18	36	30	51	45	73		

Remarks When using the above values as measured clearance, the radial clearance increment caused by the measuring load will be compensated as the clearance compensation values listed in the following table. For compensation values for C2 clearance, the smaller value will be applied to the smallest clearance and the larger value shall be applied to the largest clearance.

Clearance compensation volume

Unit: µm

bore d	l bearing liameter	Measuring load		Clearance compensation value							
Over	mm) Incl	(N)	C2	CN	C3	C4	C5				
10	18	24.5	3–4	4	4	4	4				
18	50	49	4–5	5	6	6	6				

Radial internal clearance of extra-small ball bearings

Unit: µm

Clearance number	М	C1	М	C2	M	C3	MC	C4	М	C5	M	C6
Clearance	Min	Max										
Clearance	0	5	3	8	5	10	8	13	13	20	20	28

Remarks 1. Standard clearances are MC3 values.

2. When used as measured internal clearance, the correction values in the following table will be added.

Clearance correction volume

Unit: µm

Clearance number	MC1	MC2	MC3	MC4	MC5	MC6
Clearance correction value	1	1	1	1	2	2

Remarks The measuring load for an extra-small ball bearing is 4.4 N.

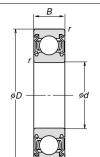
A9 NSK

of SPACEA™ Series Bearings

1. Food Grade Grease-Packed Bearings

Available on a production

A29-A30 pages


A inquiry is the following name

Basic bearing number with H3G grease Basic bearing number with H1R grease

Basic bearing number with H1B grease for high temperature

◆ See the Molded-Oil™ Bearings with food grade lubricant on page A18.

	Boundary	dimensions			NSF	H3		NSI	F H1		
Bore diameter	Outside diameter	Width	Chamfer dimension	Basic	H3G g	grease	H1R g	rease	H1B g for high ter		Limiting load ⁽³⁾ (reference
d (mm)	D (mm)	B (mm)	(min.) r (mm)	bearing number ⁽¹⁾	Availability	Limiting speeds ⁽²⁾ (reference value) (min ⁻¹)	Availability	Limiting speeds ⁽²⁾ (reference value) (min ⁻¹)	Availability	Limiting speeds ⁽²⁾ (reference value) (min ⁻¹)	value) (N)
	9	4	0.1	684	0	53,000	0	37,100	0	31,800	27
	11	4	0.15	694	Ô	48,000	Ö	33,600	Ô	28,800	40
4	12	4	0.2	604	0	48,000	O	33,600	Ö	28,800	40
	13	5	0.2	624	0	40,000	0	28,000	0	24,000	55
	11	5	0.15	685	0	45,000		31,500		27,000	30
_	13	4	0.2	695	0	43,000	0	30,100	0	25,800	45
5	14	5	0.2	605	0	40,000	0	28,000	0	24,000	56
	16	5	0.3	625	0	36,000	0	25,200	0	21,600	73
	13	5	0.15	686	0	40,000		28,000		24,000	46
	15	5	0.2	696	0	40,000	0	28,000	0	24,000	56
6	17	6	0.3	606	0	38,000	0	26,600	0	22,800	96
	19	6	0.3	626	0	32,000	0	22,400	0	19,200	99
	14	5	0.15	687	0	40,000		28,000		24,000	50
7	17	5	0.3	697	0	36,000	0	25,200	0	21,600	68
7	19	6	0.3	607	0	36,000	0	25,200	0	21,600	99
	22	7	0.3	* 627	0	30,000	0	21,000	0	18,000	140
	16	5	0.2	688	0	36,000	0	25,200	0	21,600	53
0	19	6	0.3	698	0	36,000	0	25,200	0	21,600	95
8	22	7	0.3	* 608	0	34,000	0	23,800	0	20,400	140
	24	8	0.3	* 628	0	28,000	0	19,600	0	16,800	140
	17	5	0.2	* 689	0	36,000	0	25,200	0	21,600	56
0	20	6	0.3	699	0	34,000	0	23,800	0	20,400	100
9	24	7	0.3	* 609	0	32,000	0	22,400	0	19,200	140
	26	8	0.9	* 629	0	28,000	0	19,600	0	16,800	190
9.525	22.225	7.142	0.4	* R6		32,000	0	22,400	0	19,200	140
	19	5	0.3	* 6800		34,000	0	23,800	0	20,400	73
10	22	6	0.3	* 6900	0	32,000	0	22,400	0	19,200	110
10	26	8	0.3	* 6000	0	30,000	0	21,000	0	18,000	190
	30	9	0.6	* 6200	0	24,000	0	16,800	0	14,400	21
	21	5	0.3	* 6801		32,000	0	22,400		19,200	82
10	24	6	0.3	* 6901	0	30,000	0	21,000	0	18,000	120
12	28	8	0.3	* 6001	0	28,000	Ö	19,600	O	16,800	210
	32	10	0.6	* 6201		20,000	0	14,000	0	12,000	290
	24	5	0.3	* 6802	0	28,000		19,600	0	16,800	88
15	28	7	0.3	* 6902	0	26,000	Ŏ	18,200	O	15,600	180
15	32	9	0.3	* 6002	0	24,000	0	16,800	0	14,400	230
	35	11	0.6	* 6202		20,000	0	14,000	0	12,000	320

	Boundary	dimensions			NSF	H3		NSI	F H1		
Bore diameter	Outside diameter	Width	Chamfer dimension	Basic	H3G g	rease	H1R g	rease	H1B grease for high temperature		Limiting load ⁽³⁾ (reference
d (mm)	D (mm)	B (mm)	(min.) <i>r</i> (mm)	bearing number ⁽¹⁾	Availability	Limiting speeds ⁽²⁾ (reference value) (min ⁻¹)	Availability	Limiting speeds ⁽²⁾ (reference value) (min ⁻¹)	Availability	Limiting speeds ⁽²⁾ (reference value) (min ⁻¹)	value) (N)
	26	5	0.3	* 6803	\bigcirc	26,000	\bigcirc	18,200		15,600	110
17	30	7	0.3	* 6903	\bigcirc	24,000	\bigcirc	16,800	0	14,400	190
17	35	10	0.3	* 6003	\bigcirc	22,000	\bigcirc	15,400		13,200	250
	40	12	0.6	* 6203		17,000		11,900		10,200	400
	32	7	0.3	* 6804	\bigcirc	22,000	\bigcirc	15,400	\circ	13,200	170
20	37	9	0.3	* 6904	0	19,000	\bigcirc	13,300	0	11,400	270
20	42	12	0.6	* 6004	\bigcirc	18,000	\bigcirc	12,600	0	10,800	390
	47	14	1	* 6204		15,000		10,500		9,000	540
	37	7	0.3	* 6805	\bigcirc	18,000	\bigcirc	12,600	0	10,800	190
25	42	9	0.3	* 6905	\bigcirc	16,000	\bigcirc	11,200	0	9,600	290
23	47	12	0.6	* 6005	0	15,000	\bigcirc	10,500	0	9,000	420
	52	15	1	* 6205		13,000	0	9,100	0	7,800	590
30	55	13	1	* 6006	\bigcirc	13,000	\bigcirc	9,100	0	7,800	560
30	62	16	1	* 6206	\bigcirc	11,000	\bigcirc	7,700	\circ	6,600	820
35	62	14	1	* 6007	0	11,000	0	7,700		6,600	680
	72	17	1.1	6207	0	9,500	0	6,650	0	5,700	1090
40	68	15	1	6008	0	10,000	0	7,000	0	6,000	710
40	80	18	1.1	6208	0	7,500	0	5,250	0	4,500	1240

Symbol of availability: O Available on a production-by-order basis.

Notes (1) A basic bearing number with an asterisk (*) indicates that NSK's ES1 steel has been adopted for the bearing's inner and outer ring.

- (2) The limiting speed is for Shielded type. Please contact NSK for limiting speed for contact sealed type.
- (3) The limiting load is a pure radial load that has been calculated based on a bearing life of 10⁷ rotations.

Remarks 1. The radial internal clearance for the bearings with bore diameters smaller than 10 mm is MC3. The radial internal clearance for bearings with bore diameters of 10 mm or larger is CN. See the radial internal clearance tables on page A10 for further details.

2. Shielded type is standard items.

of SPACEA™ Series Bearings

2-1. Stainless steel bearings (Bore Diameter 1–12 mm)

Stocked as standard inventory items

A inquiry is the following name

Stainless steel bearing

Stainless steel bearing Basic bearing number (Open Type)

Basic bearing number (ZZ Type)

Basic bearing number (DD Type) Stainless steel bearing

Specifications Technical data	A31-A32 pages
recrimical data	

				T					1	1
	Boundary	dimensions			Dynamic		Availability		Limiting	Limiting
Bore diameter	Outside diameter	Width	Chamfer dimension	Basic bearing	load, rating, C _H (reference			Rubber	speeds (reference	load ⁽²⁾ (reference
d	D	В	(min.) <i>r</i>	number ⁽¹⁾	value)	Open	Shielded	sealed	value)	value)
(mm)	(mm)	(mm)	(mm)		(N) [']		(ZZ)	(DD)	(min ⁻¹)	(N) [']
	3	1	0.05	681	81		•		10 000	4
1	3	1.5	0.05	MR31	81				10 000	4
	4	1.6	0.1	691	120				10 000	6
1.2	4	2.5	0.1	MR41X	96				10 000	4
	4	2	0.05	681X	96				10 000	4
1.5	5	2.6	0.15	691X	202				10 000	10
	6	3	0.15	601X	281		•		10 000	14
	5	2.3	0.08	682	144		•		10 000	7
	5	2.5	0.1	MR52	144				10 000	7
2	6	3	0.15	692	281				10 000	14
	6	2.5	0.15	MR62	281		•		10 000	14
	7	3	0.15	MR72	328		•		10 000	16
	7	3.5	0.15	602	328		•		10 000	16
	6	2.6	0.08	682X	177				10 000	8
2.5	7	3.5	0.15	692X	328		•		10 000	16
	8	2.5	0.2	MR82X	475				10 000	23
	8	4	0.15	602X	469		•		10 000	23
	6	2.5	0.1	MR63	177		•		10 000	8
	7	3	0.1	683	265		•		10 000	13
	8	2.5	0.15	MR83	336				10 000	16
3	8	4	0.15	693	475		•		10 000	23
	9	4	0.15	MR93	486				10 000	24
	9	5	0.15	603	486				10 000	24
	10	4	0.15	623	538				10 000	26
	13	5	0.2	633	1 100		•		10 000	55
	7	2.5	0.1	MR74	217		•		10 000	10
	8	3	0.1	MR84	336				10 000	16
	9	4	0.1	684	545		_		10 000	27
4	10	4	0.15	MR104	604				10 000	30
	11	4	0.15	694	815				10 000	40
	12	4	0.2	604	815				10 000	40
	13	5	0.2	624	1 110				10 000	55
	16	5	0.3	634	1 140		_	•	10 000	56
	8	2.5	0.1	MR85	185				10 000	9
	9	3	0.15	MR95	367				10 000	18
	10	4	0.15	MR105	367	•		•	10 000	18
_	11	4	0.15	MR115	609				10 000	30
5	11	5	0.15	685	609				10 000	30
	13	4	0.2	695	916				10 000	45
	14	5	0.2	605	1 130				10 000	56
	16	5	0.3	625	1 470				10 000	73
	19	6	0.3	635	1 990				10 000	99

B od		B P P P P P P P P P P P P P P P P P P P
Open Type (example)	Shielded Type (example)	Rubber Sealed Type (example)

Boundary dimensions										
	Boundary of	dimensions			Dynamic		Availability		Limitina	Limiting
Bore diameter d (mm)	Outside diameter D (mm)	Width B (mm)	Chamfer dimension (min.) r (mm)	Basic bearing number ⁽¹⁾	load, rating, C _H (reference value) (N)	Open	Shielded (ZZ)	Rubber sealed (DD)	speeds (reference value) (min-1)	load ⁽²⁾ (reference value) (N)
	10	3	0.1	MR106	423		•		10 000	21
	12	4	0.15	MR126	608		•		10 000	30
	13	5	0.15	686	920		•	•	10 000	46
6	15	5	0.2	696	1 140			•	10 000	56
	17	6	0.3	606	1 920		•	•	10 000	96
	19	6	0.3	626	1 990				10 000	99
	22	7	0.3	636	2 800				10 000	140
	11	3	0.1	MR117	388				10 000	19
	13	4	0.15	MR137	460				10 000	23
7	14	5	0.15	687	1 000			•	10 000	50
,	17	5	0.3	697	1 370				10 000	68
	19	6	0.3	607	1 990				10 000	99
	22	7	0.3	627	2 800		•		10 000	140
	12	3.5	0.1	MR128	463				10 000	23
	14	4	0.15	MR148	696				10 000	34
	16	5	0.2	688	1 070	•		•	10 000	53
8	19	6	0.3	698	1 900			•	10 000	95
	22	7	0.3	608	2 800	•			10 000	140
	24	8	0.3	628	2 850			•	9 370	140
	28	9	0.3	638	3 890				8 330	190
	17	5	0.2	689	1 130				10 000	56
	20	6	0.3	699	2 100	•		•	10 000	100
9	24	7	0.3	609	2 850	•		•	9 090	140
	26	8	0.6	629	3 890			•	8 570	190
	30	10	0.6	639	4 350	•	•		7 690	210
	15	3	0.15	6700	729				10 000	36
		4								
10	19	5	0.3	* 6800	1 460				10 000	73
	22	6	0.3	* 6900	2 290				9 370	110
	26	8	0.3	* 6000	3 900				8 330	190
	30	9	0.6	* 6200	4 350				7 500	210
	18	4	0.2	6701	789				10 000	39
12	21	5	0.3	* 6801	1 630				9 090	82
	24	6	0.3	* 6901	2 460				8 330	120
	28	8	0.3	* 6001	4 350				7 500	210
	32	10	0.6	* 6201	5 800				6 810	290

Symbol of availability: Stocked as standard inventory items. (3)

Notes (1) A basic bearing number with an asterisk (*) indicates that NSK's ES1 steel has been adopted for the bearing's inner and outer ring.

- (2) The limiting load is a pure radial load that has been calculated based on a bearing life of 107 rotations.
- (3) Orders placed for standard inventory items may incur some delay in actual delivery. Furthermore, products shipped from Japan may incur additional delays.
- Remarks 1. Open-type bearings do not include grease. Customers need to ensure that an optimum lubricant is made available for use with these bearings.
 - 2. The radial internal clearance for bearings with bore diameters smaller than 10 mm is MC3. The radial internal clearance for bearings with bore diameters of 10 mm or larger is CN. See the radial internal clearance tables on page A10 for further details.

A13 NSK

2-1. Stainless steel bearings (Bore Diameter 15-60 mm)

Stocked as standard

A31-A32 pages

A inquiry is the following name

Stainless steel bearing	Basic bearing number	(Open Type)	* B		- B -
Stainless steel bearing	Basic bearing number	(ZZ Type)			
Stainless steel bearing	Basic bearing number	(DD Type)			
		øD		ød øD	ØD Ød

Open Type (example)	Shielded Type (example)	Rubber Sealed Type (exa

	Boundary of	dimensions			Dynamic		Availability		Limiting	Limitina
Bore diameter d (mm)	Outside diameter D (mm)	Width B (mm)	Chamfer dimension (min.) r (mm)	Basic bearing number ⁽¹⁾	load, rating, C _H (reference value) (N)	Open	Shielded (ZZ)	Rubber sealed (DD)	speeds (reference value) (min ⁻¹)	load ⁽²⁾ (reference value) (N)
	21	4	0.2	6702	797				8 330	40
	24	5	0.3	* 6802	1 760				7 690	88
15	28	7	0.3	* 6902	3 700				6 970	180
10	32	9	0.3	* 6002	4 750	Ŏ			6 380	230
	35	11	0.6	* 6202	6 500	Ŏ		Ŏ	6 000	320
	23	4	0.2	6703	849				7 500	42
	26	5	0.3	* 6803	2 240				6 970	110
17	30	7	0.3	* 6903	3 900				6 380	190
	35	10	0.3	* 6003	5 100				5 760	250
	40	12	0.6	* 6203	8 150				5 260	400
	27	4	0.2	6704	885				6 380	44
	32	7	0.3	* 6804	3 400				5 760	170
20	37	9	0.3	* 6904	5 400				5 260	270
	42	12	0.6	* 6004	7 950				4 830	390
	47	14	1	* 6204	10 900				4 470	540
	32	4	0.2	6705	931				5 260	47
	37	7	0.3	* 6805	3 800				4 830	190
25	42	9	0.3	* 6905	5 950				4 470	290
	47	12	0.6	* 6005	8 550				4 160	420
	52	15	1	* 6205	11 900				3 890	590
	37	4	0.2	6706	969				4 470	48
30	55	13	1	* 6006	11 300				3 520	560
	62	16	1	* 6206	16 500	•			3 260	820
	44	5	0.3	6707	1 590				3 790	79
35	62	14	1	* 6007	13 600				3 090	680
	72	17	1.1	* 6207	21 800	•			2 800	1 090
	50	6	0.3	6708	2 140				3 330	100
40	68	15	1	* 6008	14 200	•			2 770	710
	80	18	1.1	* 6208	24 800	•			2 500	1 240
45	75	16	1	* 6009	17 800				2 500	890
	85	19	1.1	* 6209	26 600				2 300	1 330
50	80	16	1	* 6010	18 500				2 300	920
	90	20	1.1	* 6210	29 800				2 140	1 490
55	90	18	1.1	* 6011	24 000				2 060	1 200
	100	21	1.5	* 6211	37 000				1 930	1 850
60	95	18	1.1	* 6012	25 000				1 930	1 250
	110	22	1.5	* 6212	44 500				1 760	2 220

Symbol of availability: Stocked as standard inventory items.

Symbol of availability: Stocked as standard inventory items.

Notes (1) A basic bearing number with an asterisk (*) indicates that NSK's ES1 steel has been adopted for the bearing's inner and outer ring.

(2) The limiting load is a pure radial load that has been calculated based on a bearing life of 10⁷ rotations.

(3) Orders placed for standard inventory items may incur some delay in actual delivery. Furthermore, products shipped from Japan may incur additional delays.

Remarks 1. Open-type bearings do not include grease. Customers need to ensure that an optimum lubricant is made available for use with these bearings.

2. The radial internal clearance for the bearings on this page is CN. See the radial internal clearance tables on page A10 for further details.

of SPACEA™ Series Bearings

2-2. Stainless steel bearings (with flanged outer ring)

• A inquiry is the following name

Stainless steel bearing Basic bearing number

A31-A32 pages

	ı	Boundary of	dimensions				Dynamic		Limiting	Limiting
Bore	Outside	Width	Flanged	Flanged	Chamfer	Basic	load, rating, C _H		speeds	load(1)
diameter	diameter		Outside diameter	Width	dimension (min.)	bearing	(reference	Availability		
d (D	B ₁	D_2	B ₂	r r	number	value)		value)	value) (N)
(mm)	(mm)	(mm)	(mm)	(mm)	(mm)		(N)		(min ⁻¹)	
4.5	4	2	5	0.6	0.05	F681X	96		10 000	4
1.5	5	2.6	6.5	0.8	0.15	F691X	202		10 000	10
	6 5	3	7.5	0.8	0.15	F601X	281		10 000	<u>14</u> 7
	5	2.3 2.5	6.1 6.2	0.6	0.08	F682	144 144		10 000 10 000	7
2	6	3	7.5	0.6	0.1 0.15	MF52	281		10 000	14
2	7	3	8.2	0.8	0.15	F692 MF72	328		10 000	16
	7	3.5	8.5	0.0	0.15	F602	328		10 000	16
	6	2.6	7.1	0.8	0.13	F682X	177		10 000	8
2.5	7	3.5	8.5	0.9	0.15	F692X	328		10 000	16
	8	4	9.5	0.9	0.15	F602X	469	Ŏ	10 000	23
	6	2.5	7.2	0.6	0.1	MF63	177		10 000	8
	7	3	8.1	0.8	0.1	F683	265		10 000	13
0	8	4	9.5	0.9	0.15	F693	475		10 000	23
3	9	4	10.6	0.8	0.15	MF93	486		10 000	24
	9	5	10.5	1	0.15	F603	486		10 000	24
	10	4	11.5	1	0.1	F623	538		10 000	26
	7	2.5	8.2	0.6	0.1	MF74	217		10 000	10
	8	3	9.2	0.6	0.1	MF84	336		10 000	16
	9	4	10.3	1	0.1	F684	545		10 000	27
4	10	4	11.6	0.8	0.15	MF104	604		10 000	30
4	11	4	12.5	1	0.15	F694	815		10 000	40
	12	4	13.5	1	0.2	F604	815		10 000	40
	13	5	15	1	0.2	F624	1 110		10 000	55
	16	5	18	11	0.3	F634	1 140		10 000	56
	8	2.5	9.2	0.6	0.1	MF85	185		10 000	9
	9	3	10.2	0.6	0.15	MF95	367		10 000	18
	10	4	11.6	0.8	0.15	MF105	367		10 000	18
5	11	5	12.5	1	0.15	F685	609		10 000	30
0	13	4	15	1	0.2	F695	916		10 000	45
	14	5	16	11	0.2	F605	1 130		10 000	56
	16	5	18	1	0.3	F625	1 470		10 000	73
	19	6	22	1.5	0.3	F635	1 990		10 000	99
	10	3	11.2	0.6	0.1	MF106	423		10 000	21
	12	4	13.6	0.8	0.15	MF126	608		10 000	30
6	13	5	15	1.1	0.15	F686	920		10 000	46
	15 17	5	17	1.2	0.2	F696 F606	1 140		10 000	<u>56</u> 96
	19	6	19 22	1.2	0.3		1 920		10 000	99
	11	<u>6</u> 3		1.5	0.3	F626 MF117	1 990		10 000 10 000	19
	13	4	12.2 14.6	0.6	0.1 0.15	MF137	388		10 000	23
	14	5		0.8	I	F687	460		10 000	<u>50</u>
7	17	5	16 19	1.1	0.15 0.3	F697	1 000 1 370		10 000	68
	19	6	22	1.5	0.3	F607	1 990		10 000	99
	22	7				F627	2 800		10 000	140
	12	3.5	25 13.6	1.5 0.8	0.3	MF128	463		10 000	23
	14	4	15.6	0.8	0.15	MF148	696		10 000	34
8	16	5	18	1.1	0.15	F688	1 070		10 000	53
5	19	6	22	1.5	0.2	F698	1 900		10 000	95
	22	7	25	1.5	0.3	F608	2 800		10 000	140
	17	5	19	1.1	0.3	F689	1 130		10 000	56
9	20	6	23	1.5	0.2	F699	2 100	ě	10 000	100
10	19	5	21	1.5	0.3	F6800	1 460		10 000	73
								_		

Symbol of availability: Stocked as standard inventory items. (2)

Notes (1) The limiting load is a pure radial load that has been calculated based on a bearing life of 10⁷ rotations.

(2) Orders placed for standard inventory items may incur some delay in actual delivery. Furthermore, products shipped from Japan may incur additional delays.

Remarks 1. The radial internal clearance for bearings with bore diameters smaller than 10 mm is MC3. The radial internal clearance for bearings with bore diameters of 10 mm or larger is CN. See the radial internal clearance tables on page A10 for further details.

2. Shielded Type is standard inventory items.

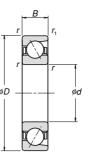
A15 NSK

NSK A16

3. Stainless steel Angular Contact Ball Bearings

Stocked as standard

A33 pages


 A inquiry is the following name Stainless steel bearing

Basic bearing number

for Normal atomosphere

Stainless steel bearing Basic bearing number

for Vacuum environment

	Bou	ndary dimens	ions			Dynamic	Availa	ability	Limiting	Limiting
Bore diameter d (mm)	Outside diameter D (mm)	Width B (mm)	Chamfer dimension (min.)	Chamfer dimension (min.) r ₁ (mm)	Basic bearing number ⁽¹⁾	load, rating, C _H (reference value) (N)	For use in Normal atmosphere and Clean environments	For use in Vacuum, Clean and High- temperature environments	speeds (reference value) (min ⁻¹)	load ⁽²⁾ (reference value) (N)
6	17	6	0.3	0.15	* 706A	1 730			10 000	86
8	22	7	0.3	0.15	* 708A	2 840			10 000	140
10	26	8	0.3	0.15	* 7000A	4 250			8 330	210
12	28	8	0.3	0.15	* 7001A	4 600			7 500	230
	28	7	0.3	0.15	* 7902A5	3 850			6 970	190
15	32	9	0.3	0.15	* 7002A	4 900			6 380	240
	35	11	0.6	0.3	* 7202A	6 900			6 000	340
17	35	10	0.3	0.15	* 7003A	5 200			5 760	260
	37	9	0.3	0.15	* 7904A5	5 600			5 260	280
20	42	12	0.6	0.3	* 7004A	8 750		•	4 830	430
	47	14	1	0.6	* 7204A	11 600		•	4 470	580
 25	47	12	0.6	0.3	* 7005A	9 150		•	4 160	450
25	52	15	1	0.6	* 7205A	13 100		•	3 890	650
30	47	9	0.3	0.15	* 7906A5	6 700			3 890	330

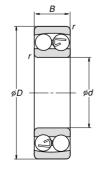
Symbol of availability:
Stocked as standard inventory items.

Notes (1) A basic bearing number with an asterisk (*) indicates that NSK's ES1 steel has been adopted for the bearing's inner and outer ring.

- (2) The limiting load is a pure radial load that has been calculated based on a bearing life of 10⁷ rotations.
- (3) Orders placed for standard inventroy items may incur some delay in actual delivery. Furthermore, products shipped from Japan may incur additional delays.

Remarks: Customers need to ensure that an optium lubricant is made available for use with these bearings.

4. Stainless steel Self-Aligning Ball Bearings


A34 pages

A inquiry is the following name

Stainless steel bearing

Basic bearing number

	Boundary of	dimensions			Dynamic		Limiting	Limiting	Radial
Bore diameter d (mm)	Outside diameter D (mm)	Width B (mm)	Chamfer dimension (min.) r (mm)	Basic bearing number ⁽¹⁾	load, rating, C _H (reference value) (N)	Availability	speeds	load ⁽²⁾ (reference value) (N)	internal clearance (mm)
10	30	9	0.6	* 1200	4 750		7 500	230	0.006-0.017
12	32	10	0.6	* 1201	4 850		6 810	240	0.006-0.019
15	35	11	0.6	* 1202	6 450		6 000	320	0.008-0.021
17	40	12	0.6	* 1203	6 800		5 260	340	0.008-0.021
20	47	14	1	* 1204	8 500		4 470	420	0.010-0.023
25	52	15	1	* 1205	10 400		3 890	520	0.011-0.024

Symbol of availability: Stocked as standard inventory items.

§

Notes (1) A basic bearing number with an asterisk (*) indicates that NSK's ES1 steel has been adopted for the bearing's inner and outer ring.

- (2) The limiting load is a pure radial load that has been calculated based on a bearing life of 10⁷ rotations.
- (3) Orders placed for standard inventroy items may incur some delay in actual delivery. Furthermore, products shipped from Japan may incur additional delays.

Remarks: Customers need to ensure that an optium lubricant is made available for use with these bearings.

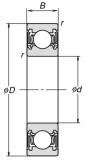
of SPACEA™ Series Bearings

5. Molded-Oil™ bearings

Stocked as standard

Available on a production

A35-A36 pages


A inquiry is the following name

Molded-Oil™ bearing Molded-Oil™ bearing Basic bearing number

Stainless steel

with food grade lubricant Basic bearing number

	Boundary of	dimensions			Availa	ability	Limiting	Applied	
Bore diameter d (mm)	Outside diameter D (mm)	Width B (mm)	Chamfer dimension (min.) r (mm)	Basic bearing number ⁽¹⁾	General grade lubricant	Food grade lubricant	speeds ⁽²⁾ (reference value) (min ⁻¹)	load [®] (reference value) (N)	
	22	6	0.3	* 6900	•	0	9 370	23 – 110	
10	26	8	0.3	* 6000	•	0	8 330	39 – 190	
	30	9	0.6	* 6200	•	0	7 500	44 – 210	
	24	6	0.3	* 6901		0	8 330	25 – 120	
12	28	8	0.3	* 6001		0	7 500	44 – 210	
	32	10	0.6	* 6201	•	0	6 810	58 – 290	Ru
	32	9	0.3	* 6002		0	6 380	48 – 230	
15	35	11	0.6	* 6202		0	6 000	65 – 320	
17	35	10	0.3	* 6003		0	5 760	51 – 250	
17	40	12	0.6	* 6203	•	0	5 260	82 – 400	
	42	12	0.6	* 6004		0	4 830	80 – 390	
20	47	14	1	* 6204		0	4 470	110 – 540	
05	47	12	0.6	* 6005		0	4 160	86 – 420	
25	52	15	1	* 6205		0	3 890	120 – 590	
30	55	13	1	* 6006		0	3 520	120 – 560	

Rubber Sealed Type (example)

Symbol of availability: Stocked as standard inventory items. (4)

Notes (1) A basic bearing number with an asterisk (*) indicates that NSK's ES1 steel has been adopted for the bearing's inner and outer ring.

- (2) The limiting speed of these bearings has been calculated for 25°C operating conditions. Limiting speeds will be slower for operating conditions of 35°C or highter. (Refer to page A35 for further details.)
- (3) The applied load is a pure radial load that has been calculated based on a bearing life of 10⁷ rotations.
- (4) Orders placed for standard inventroy items may incur some delay in actual delivery. Furthermore, products shipped from Japan may incur additional delays.

Remarks 1. The radial internal clearance for the bearings on this page is CN. See the radial internal clearance tables on page A10 for further details.

2. Rubber sealed type is standard inventory items.

of SPACEA™ Series Bearings

6. Hybrid Bearings

Available on a production-

A37-A38 pages

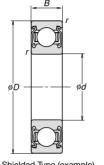
A inquiry is the following name

Hybrid bearing Basic bearing number

Dimensions, Accuracy and Availability of bearings refer to the following Clause 7.

7. Corrosion-resistant coated bearings

ilable on a production


A inquiry is the following name

A39-A40 pages

Corrosion-resistant coated bearing

Basic bearing number

Boundary of	dimensions			Avail	ability	Limiting	Limiting
Outside diameter D (mm)	Width B (mm)	Chamfer dimension (min.) r (mm)	Basic bearing number ⁽¹⁾	Hybrid bearings	Corrosion- resistant coated bearings	speeds (reference value) (min ⁻¹)	load ⁽²⁾ (reference value) (N)
26	8	0.3	* 6000			1 000	78
30	9	0.6	* 6200			1 000	87
28	8	0.3	* 6001			1 000	87
32	10	0.6	* 6201			900	110
32	9	0.3	* 6002			850	95
35	11	0.6	* 6202			800	130
35	10	0.3	* 6003			760	100
40	12	0.6	* 6203		0	700	160
37	9	0.3	* 6904	0	0	700	100
42	12	0.6	* 6004			640	150
47	14	1	* 6204			590	210
42	9	0.3	* 6905			590	110
47	12	0.6	* 6005	0	0	550	170
52	15	1	* 6205		0	510	230
55	13	1	* 6006			470	220
	Outside diameter D (mm) 26 30 28 32 35 35 40 37 42 47 42 47 52	diameter D (mm) Width B (mm) 26 8 30 9 28 8 32 10 32 9 35 11 35 10 40 12 37 9 42 12 47 14 42 9 47 12 52 15	Outside diameter D (mm) Width B (mm) Chamfer dimension (min.) r (mm) 26 8 0.3 30 9 0.6 28 8 0.3 32 10 0.6 32 9 0.3 35 11 0.6 35 10 0.3 40 12 0.6 37 9 0.3 42 12 0.6 47 14 1 42 9 0.3 47 12 0.6 52 15 1	Outside diameter D (mm) Width (mm) Chamfer dimension (min.) r (mm) Basic bearing number(m) 26 8 0.3 * 6000 30 9 0.6 * 6200 28 8 0.3 * 6001 32 10 0.6 * 6201 32 9 0.3 * 6002 35 11 0.6 * 6202 35 10 0.3 * 6003 40 12 0.6 * 6203 37 9 0.3 * 6904 42 12 0.6 * 6004 47 14 1 * 6204 42 9 0.3 * 6905 47 12 0.6 * 6005 52 15 1 * 6205	Outside diameter D (mm) Width B (mm) Chamfer dimension (min.) r (mm) Basic bearing number(n) Hybrid bearings 26 8 0.3 * 6000 • 6200 30 9 0.6 * 6200 • 6201 28 8 0.3 * 6001 • 6201 32 10 0.6 * 6201 • 6202 35 11 0.6 * 6202 • 6202 35 10 0.3 * 6003 • 6003 40 12 0.6 * 6203 • 6203 37 9 0.3 * 6904 • 6204 42 12 0.6 * 6004 • 6204 47 14 1 * 6204 • 6204 47 12 0.6 * 6005 • 6205 52 15 1 * 6205 • 6205	Outside diameter D (mm) Width (mm) Chamfer dimension (min.) r (mm) Basic bearing number ⁽¹⁾ Hybrid bearings Corrosion-resistant coated bearings 26 8 0.3 * 6000 O	Outside diameter D (mm) Width B (mm) Chamfer dimension (min.) r (mm) Basic bearing number¹¹¹ Hybrid bearings Corrosion-resistant coated bearings Speeds (reference value) (min⁻¹) 26 8 0.3 * 6000 1 000 30 9 0.6 * 6200 1 000 28 8 0.3 * 6001 1 000 32 10 0.6 * 6201 900 32 9 0.3 * 6002 850 35 11 0.6 * 6202 800 35 10 0.3 * 6003 760 40 12 0.6 * 6203 700 37 9 0.3 * 6904 700 42 12 0.6 * 6004 640 47 14 1 * 6204 590 47 12 0.6 * 6005 550 52 15 1 * 6205 550

Symbol of availability: Available on a production-by-order basis.

Notes (1) A basic bearing number with an asterisk (*) indicated that NSK's ES1 steel has been adopted for the bearing's inner and outer ring.

(2) The limiting load is a pure radial load that has been calculated based on a bearing life of 10⁷ rotations.

Remarks 1. The radial internal clearance for the bearings on this page is range from CN (minimum clearance) to C3 (maximum clearance). See the radial internal clearance tables on page A10 for further details.

2. Shielded type is standard items.

8. ESZ Bearings

Available on a production-

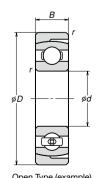
A41-A42 pages

Deep groove ball bearings

A inquiry is the following name

ESZ bearing Basic bearing number

	Boundary of	dimensions				Limiting	Limiting
Bore diameter d (mm)	Outside diameter D (mm)	Width B (mm)	Chamfer dimension (min.) r (mm)	Basic bearing number	Availability	speeds (reference value) (min ⁻¹)	load ⁽¹⁾ (reference value) (N)
10	26	8	0.3	6000		1 000	78
	30	9	0.6	6200	\circ	1 000	87
12	28	8	0.3	6001	0	1 000	87
12	32	10	0.6	6201	\bigcirc	900	110
15	32	9	0.3	6002		850	95
	35	11	0.6	6202	\bigcirc	800	130
17	35	10	0.3	6003		760	100
17	40	12	0.6	6203		700	160
20	42	12	0.6	6004		640	150
20	47	14	1	6204		590	210
25	47	12	0.6	6005		550	170
23	52	15	1	6205		510	230
30	55	13	1	6006		470	220
30	62	16	1	6206		430	330
35	62	14	1	6007		410	270
	72	17	1.1	6207		370	430
40	68	15	1	6008		370	280
40	80	18	1.1	6208		330	490
45	75	16	1	6009		330	350
45	85	19	1.1	6209		300	530
50	80	16	1	6010		300	370
	90	20	1.1	6210		280	590
55	90	18	1.1	6011		270	480
33	100	21	1.5	6211		250	740
60	95	18	1.1	6012	0	250	500
	110	22	1.5	6212	0	230	890



Deep groove ball bearings with aligning housing ring

A inquiry is the following name

ESZ bearing Basic bearing number

	Boundary	dimensions				Limiting	Limiting
Bore diameter d (mm)	Outside diameter D (mm)	Width B (mm)	Chamfer dimension (min.) r (mm)	Basic bearing number	Availability	speeds (reference value) (min-1)	load ⁽¹⁾ (reference value) (N)
10	35	9	0.6	CD200	0	1 000	87
12	37	10	0.6	CD201		900	110
15	40	11	0.6	CD202	0	800	130
17	46	12	0.6	CD203	0	700	160
20	54	14	1	CD204	0	590	210
25	60	15	1	CD205	O	510	230
30	72	16	1	CD206		430	330

Open Type (example)

Symbol of availability: Available on a production-by-order basis.

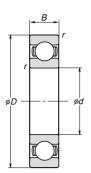
Note (1) The limiting load is a pure radial load that has been calculated based on a bearing life of 10⁷ rotations.

Remarks 1. The radial internal clearance for the bearings on this page is C3. See the radial internal clearance tables on page A10 for further details.

2. Open type is standard items.

of SPACEA™ Series Bearings

9. ESA Bearings


Available on a production-

A43-A44 pages

A inquiry is the following name

ESA bearing Basic bearing number

	Boundary of	dimensions				Limiting	Limiting
Bore diameter d (mm)	Outside diameter D (mm)	Width B (mm)	Chamfer dimension (min.) r (mm)	Basic bearing number	Availability	speeds (reference value) (min-1)	load ⁽¹⁾ (reference value) (N)
8	22	7	0.3	608	0	1 000	56
10	26	8	0.3	6000	0	1 000	78
12	28	8	0.3	6001		1 000	87
15	32	9	0.3	6002		850	95
20	42	12	0.6	6004		640	150
20	47	14	1	6204		590	210
25	52	15	1	6205		510	230
30	55	13	1	6006	0	470	220

Open Type (example)

Symbol of availability: Available on a production-by-order basis.

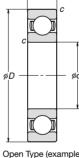
Note (1) The limiting load is a pure radial load that has been calculated based on a bearing life of 10⁷ rotations.

Remarks 1. The radial internal clearance for bearings with bore diameters smaller than 10 mm range from MC3 (minimum clearance) to MC5 (maximum clearance). The radial internal clearance for bearings with bore diameters of 10 mm or larger range from CN (minimum clearance) to C4 (maximum clearance). See the radial internal clearance tables on page A10 for further details.

2. Open type is standard items.

10. All-Ceramic Bearings

Available on a production-


A45-A46 pages

A inquiry is the following name

All-ceramic bearing

Basic bearing number

	Boundary of	dimensions		Basic		Limitina	Limiting
Bore diameter d (mm)	Outside diameter D (mm)	Width B (mm)	Vidth dimension by (min.)		Availability	speeds (reference value) (min-1)	load ⁽¹⁾ (reference value) (N)
8	22	7	0.3	608	0	1 000	140
10	19	5	0.3	6800	0	1 000	73
10	26	8	0.3	6000		1 000	190
12	28	8	0.3	6001	0	1 000	210
20	42	12	0.6	6004	0	640	390
20	47	14	1	6204	0	590	540
30	62	16	1	6206	0	430	820
40	68	15	1	6008	0	370	710

Open Type (example)

Symbol of availability: Available on a production-by-order basis.

Note (1) The limiting load is a pure radial load that has been calculated based on a bearing life of 10⁷ rotations.

Remarks 1. The radial internal clearance for bearings with bore diameters smaller than 10 mm range from MC3 (minimum clearance) to MC5 (maximum clearance). The radial internal clearance for bearings with bore diameters of 10 mm or larger range from CN (minimum clearance) to C4 (maximum clearance). See the radial internal clearance tables on page A10 for further details.

2. Open type is standard items.

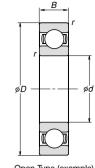
11. Aqua-Bearing™

Available on a production-

A47-A48 pages

A inquiry is the following name

Aqua-Bearing™


Basic bearing number

with ceramic balls

Aqua-Bearing™

Basic bearing number

with glass balls

Open Type (example)

	Boundary dimensions ⁽¹⁾				Avail	Availability		Limiting	Radial	
Bore diameter d (mm)	Outside diameter D (mm)	Width B (mm)	Chamfer dimension (min.) r (mm)	Basic bearing number	Ceramic balls	Special glass balls	Limiting speeds (reference value) (min ⁻¹)	load ⁽²⁾ (reference value) (N)	internal clearance (mm)	
	22	6	0.3	6900	0		1 000	22		
10	26	8	0.3	6000			1 000	39	0.04-0.12	
	30	9	0.6	6200			1 000	43		
	24	6	0.3	6901			1 000	24		
12	28	8	0.3	6001			1 000	43	0.05-0.14	
	32	10	0.6	6201	\circ		900	58		
	28	7	0.3	6902		0	930	37		
15	32	9	0.3	6002			850	47	0.05-0.14	
	35	11	0.6	6202			800	65		
17	30	7	0.3	6903	0		850	39	0.05-0.14	
	35	10	0.3	6003			760	51	0.05-0.14	
	37	9	0.3	6904			700	54		
20	42	12	0.6	6004			640	79	0.05-0.15	
	47	14	1	6204		Ō	590	100		
25	42	9	0.3	6905			590	59	0.06-0.16	
25	47	12	0.6	6005		Ō	550	85	0.00-0.16	

Symbol of availability: Available on a production-by-order basis.

Notes (1) Tolerances: bore diameter: 0 mm to +0.05 mm; outer diameter: -0.05 mm to 0 mm

(2) The limiting load is a pure radial load that has been calculated based on a bearing life of 10⁷ rotations.

Remarks: Open type is standard items.

of SPACEA™ Series Bearings

12. LG2/LGU Grease-Packed Bearings

Stocked as standard

Available on a productionby-order basis

A inquiry is the following name

Basic bearing number

with LG2 grease

Basic bearing number

with LGU grease

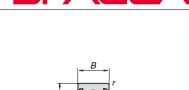
A49-A50 pages

Dimensions, Accuracy and Availability of bearings refer to the following Clause 13.

13. DL2 Grease-Packed Bearings

A51-A52 pages

A inquiry is the following name


Basic bearing number with DL2 grease

	Boundary of	dimensions				Availability		Limiting	Limiting
Bore diameter d (mm)	Outside diameter D (mm)	Width B (mm)	Chamfer dimension (min.)	Basic bearing number ⁽¹⁾	LG2 grease	LGU grease	DL2 grease	speeds (reference value) (min-1)	load ⁽²⁾ (reference value) (N)
	6	2.5	0.1	MR63				1 000	8
3	8	4	0.15	693				1 000	23
	10	4	0.15	623				1 000	26
	7	2.5	0.1	MR74				1 000	10
	9	4	0.1	684		0	0	1 000	27
4	11	4	0.15	694				1 000	40
	12	4	0.2	604				1 000	40
	13	5	0.2	624				1 000	55
	11	5	0.15	685				1 000	30
5	13	4	0.2	695				1 000	45
5	14	5	0.2	605				1 000	56
	16	5	0.3	625			0	1 000	73
	13	5	0.15	686	•		0	1 000	46
6	15	5	0.2	696				1 000	56
О	17	6	0.3	606	•	0	0	1 000	96
	19	6	0.3	626	•	0	0	1 000	99
	14	5	0.15	687	•		0	1 000	50
7	17	5	0.3	697	•	0	0	1 000	68
/	19	6	0.3	607	•	0	0	1 000	99
	22	7	0.3	* 627	0	0	0	1 000	140
	16	5	0.2	688	•		0	1 000	53
0	19	6	0.3	698	•	0	0	1 000	95
8	22	7	0.3	608	•	0	0	1 000	140
	24	8	0.3	628		0		1 000	140
	17	5	0.2	689	•	0	0	1 000	56
0	20	6	0.3	699	0	0	0	1 000	100
9	24	7	0.3	* 609	0	0	0	1 000	140
	26	8	0.6	* 629				1 000	190
9.525	22.225	7.142	0.4	* R6				1 000	140

Symbol of availability: Stocked as standard inventory times. Available on a production-by-order basis.

Notes (1) A basic bearing number with an asterisk (*) indicates that NSK's ES1 steel has been adopted for the bearing's inner and outer ring. However, stocked as standard inventory items are used standard stainless steel.

Remarks 1. The radial internal clearance for bearings with bore diameters smaller than 10 mm is MC3. The radial internal clearance for bearings with bore diameters of 10 mm or larger is CN. See the radial internal clearance tables on page A10 for further details.

Shielded Type (example)

	Boundary	dimensions					Availability		Limiting	
Bore diameter d (mm)	Outside diameter D (mm)	Width B (mm)	Chamfer dimension (min.) r (mm)	b	Basic pearing umber ⁽¹⁾	LG2 grease	LGU grease	DL2 grease	Limiting speeds (reference value) (min ⁻¹)	Limiting load ⁽²⁾ (reference value) (N)
	19	5	0.3	*	6800		0	0	1 000	73
10	22	6	0.3	*	6900		0	0	1 000	110
10	26	8	0.3	*	6000		0	\circ	1 000	190
	30	9	0.6	*	6200			\circ	1 000	210
	21	5	0.3	*	6801			\circ	1 000	82
12	24	6	0.3	*	6901			0	1 000	120
12	28	8	0.3	*	6001			\circ	1 000	210
	32	10	0.6	*	6201			\circ	1 000	290
	24	5	0.3	*	6802	\circ	0	\circ	1 000	88
15	28	7	0.3	*	6902			\circ	1 000	180
15	32	9	0.3	*	6002		0	\circ	1 000	230
	35	11	0.6	*	6202		0	\circ	1 000	320
	26	5	0.3	*	6803	0	0	0	1 000	110
17	30	7	0.3	*	6903		0	0	1 000	190
17	35	10	0.3	*	6003			\circ	1 000	250
	40	12	0.6	*	6203		0	0	1 000	400
	32	7	0.3	*	6804			0	1 000	170
20	37	9	0.3	*	6904		0	\circ	1 000	270
20	42	12	0.6	*	6004		0	\circ	1 000	390
	47	14	1	*	6204		0	0	1 000	540
	37	7	0.3	*	6805	0		0	1 000	190
25	42	9	0.3	*	6905			\circ	1 000	290
23	47	12	0.6	*	6005		0	\circ	1 000	420
	52	15	1	*	6205		0	0	1 000	590
	42	7	0.3		6806	\circ		\circ	1 000	190
30	47	9	0.3		6906	\circ		\circ	1 000	300
30	55	13	1	*	6006	\circ		\circ	1 000	560
	62	16	1	*	6206	\circ		\circ	1 000	820
35	62	14	1	*	6007	0	0	0	1 000	680
	72	17	1.1		6207	0	0	0	930	1 090
40	68	15	1		6008	0	0	0	920	710
40	80	18	1.1		6208	0			830	1 240

⁽²⁾ The limiting load is a pure radial load that has been calculated based on a bearing life of 10⁷ rotations.

⁽³⁾ Orders placed for standard inventroy items may incur some delay in actual delivery. Furthermore, products shipped from Japan may incur additional delays.

^{2.} Sheleded type is standard items.

of SPACEA™ Series Bearings

14. DFO Bearings

Available on a production-

A53-A54 pages

Shielded Type (example)

A inquiry is the following name

E-DFO bearing Basic bearing number

V-DFO bearing Basic bearing number

Borne Color Chamfer Chamfe	Dasic bearing number										
Clameter Clameter		Boundary of	dimensions	6	D:-	E-	DFO Bearing	gs	V-	DFO Bearing	gs
Columber Columber	Bore	Outside	Width								
Description Common Commo					bearing	Availability			Availability	speeds (reference	
4 11 4 0.15 694				` r ´	number ⁽¹⁾	, wandomity	` value)	`value)	,aa.	` value)	` value)
11	(mm)				604		, ,			, ,	
12		_									
13 5 0.2 624 0 1000 55 1000 22	4					\vdash					
11						\vdash					
5 13 4 0.2 695 1000 45 1000 22 16 5 0.3 625 1000 73 1000 29 13 5 0.15 688 1000 46 1000 22 17 6 0.3 606 1000 96 1000 38 19 6 0.3 606 1000 96 1000 38 19 6 0.3 606 1000 99 1000 39 14 5 0.15 687 1000 68 1000 22 7 17 5 0.3 607 1000 68 1000 29 19 6 0.3 607 1000 40 1000 39 22 7 0.3 868 1000 53 1000 20 8 19 6 0.3 698 1000 56 1	-				_	\sim			\sim		
14 5 0.2 605 1000 56 1000 22	_					\sim			\sim		
16 5 0.3 625 1000 73 1000 29	5					Ŏ			Ŏ		
6 13 5 0.15 686 1 000 46 1 000 18 15 5 0.2 696 1 000 96 1 000 38 19 6 0.3 606 1 000 96 1 000 39 14 5 0.15 687 1 000 50 1 000 20 7 17 5 0.3 697 1 000 68 1 000 27 19 6 0.3 607 1 000 68 1 000 27 19 6 0.3 607 1 000 68 1 000 27 19 6 0.3 607 1 000 68 1 000 27 19 6 0.3 607 1 000 68 1 000 27 19 6 0.3 607 1 000 99 1 000 39 22 7 0.3 627 1 000 140 1 000 56 16 5 0.2 688 1 000 53 1 000 21 8 19 6 0.3 698 1 000 95 1 000 38 22 7 0.3 608 1 000 140 1 000 56 24 8 0.3 608 1 000 140 1 000 56 24 8 0.3 608 1 000 140 1 000 57 17 5 0.2 688 1 000 140 1 000 57 26 8 0.6 629 1 000 140 1 000 57 26 8 0.6 629 1 000 140 1 000 57 26 8 0.6 629 1 000 140 1 000 57 26 8 0.6 629 1 000 140 1 000 57 27 28 8 0.3 6800 1 000 140 1 000 58 28 29 1 000 190 1 000 100 100 100 100 29 22 6 0.3 6800 1 000 140 1 000 58 21 5 0.3 6800 1 000 140 1 000 78 22 6 0.3 6800 1 000 140 1 000 78 24 5 0.3 6800 1 000 100 100 100 78 25 26 8 0.3 6800 1 000 100 100 100 78 26 8 0.3 6800 1 000 100 100 100 78 27 5 0.3 6800 1 000 100 100 100 78 28 8 0.3 6800 1 000 100 100 100 78 29 20 6 0.3 6800 1 000 100 100 100 78 21 5 0.3 6800 1 000 100 100 100 78 22 6 0.3 6800 1 000 100 100 100 100 22 6 0.3 6800 1 000 100 100 100 22 6 5 0.3 6800 1 000 100 100 100 22 6 6 6 6 6 6 6 6 6						Ŏ			Ŏ		
6						Ŏ	1 000		Ŏ	1 000	
17	6			0.2	696	Ŏ	1 000	56	Ö	1 000	22
Toleran	6	17	6	0.3			1 000	96	0	1 000	38
7 17 5 0.3 697 1 000 68 1 000 27 19 6 0.3 607 1 000 99 1 000 39 16 5 0.2 688 1 000 53 1 000 21 8 19 6 0.3 698 1 000 95 1 100 38 22 7 0.3 * 608 1 000 140 1 000 56 24 8 0.3 * 628 1 000 140 1 000 56 17 5 0.2 * 689 1 000 100 1 000 56 17 5 0.2 * 689 1 000 100 1 000 42 24 7 0.3 * 609 1 1000 100 1 000 20 26 8 0.6 * 629 1 000 190 1 000 78 9.525 22.2225 7.142 0.4 * 86		19		0.3	626		1 000	99		1 000	
19 6 0.3 607 1000 99 1000 39								50	O	1 000	
19	7					Q			Q		
16	•					0			<u>O</u>		
8	-					Q			Q		
8						\bigcirc					
24	8					\vdash					
9					-	\sim					
9	-					\vdash			$\vdash \times \vdash$		
9 24 7 0.3 * 609 1 000 140 1 000 57 26 8 0.6 * 629 1 000 190 1 000 78 9.525 22.225 7.142 0.4 * R6 1 000 140 1 000 78 19 5 0.3 * 6800 1 000 73 1 000 29 10 22 6 0.3 * 6900 1 000 100 100 1000 49 26 8 0.3 * 6900 1 000 100 1 000 78 30 9 0.6 * 6200 1 000 210 1 000 87 21 5 0.3 * 6801 1 000 82 1 000 32 12 24 6 0.3 * 6901 1 000 210 1 000 87 32 10 0.6 * 6201 900 290 900 110 32 7					-	\sim			$\vdash \overset{\sim}{\sim}$		
9.525 22.225 7.142 0.4	9					$\tilde{}$			\sim		
9.525 22.225 7.142 0.4 * R6 1 000 140 1 000 56 19 5 0.3 * 6800 1 000 73 1 000 29 22 6 0.3 * 6900 1 1000 110 1 000 45 26 8 0.3 * 6000 1 000 190 1 000 78 30 9 0.6 * 6200 1 000 210 1 000 32 21 5 0.3 * 6801 1 1 000 82 1 000 32 24 6 0.3 * 6901 1 000 120 1 000 49 28 8 0.3 * 6901 1 000 290 900 110 24 5 0.3 * 6802 1 000 88 1 000 35 15 28 7 0.3 * 6902 930 180 930 74 32 9 0.3 * 6802					-	Ŏ			Ŏ		
10	9.525					Ŏ			Ŏ		
10				0.3	* 6800	Ŏ	1 000	73	Ŏ	1 000	29
12	10	22	6	0.3			1 000	110	Ŏ		45
12	10	26		0.3	* 6000		1 000	190	0	1 000	78
12 24 6 0.3 * 6901 1 000 120 1 000 49 28 8 0.3 * 6001 1 000 210 1 000 87 32 10 0.6 * 6201 900 290 900 110 24 5 0.3 * 6802 1 000 88 1 000 35 28 7 0.3 * 6902 930 180 930 74 32 9 0.3 * 6002 850 230 850 95 35 11 0.6 * 6202 800 320 800 130 26 5 0.3 * 6803 930 110 930 44 30 7 0.3 * 6903 850 190 850 78 17 35 10 0.3 * 6003 760 250 760 100 40 12 0.6 * 6203 700						O			O		
12									\bigcirc		
15	12								\bigcirc		
15 24 5 0.3 * 6802 1 000 88 1 000 35 28 7 0.3 * 6902 930 180 930 74 32 9 0.3 * 6002 850 230 850 95 35 11 0.6 * 6202 800 320 800 130 26 5 0.3 * 6803 930 110 930 44 30 7 0.3 * 6903 850 190 850 78 35 10 0.3 * 6903 850 190 850 78 35 10 0.3 * 6003 760 250 760 100 40 12 0.6 * 6203 700 400 700 160 32 7 0.3 * 6804 760 170 760 68 20 37 9 0.3 * 6904 700 270					-						
15 28 7 0.3 *6902 930 180 930 74 32 9 0.3 *6002 850 230 850 95 35 11 0.6 *6202 800 320 800 130 26 5 0.3 *6803 930 110 930 44 30 7 0.3 *6903 850 190 850 78 35 10 0.3 *6003 760 250 760 100 40 12 0.6 *6203 700 400 700 160 32 7 0.3 *6804 760 170 760 68 37 9 0.3 *6904 700 270 700 100 42 12 0.6 *6004 640 390 640 150 47 14 1 *6204 590 540 590 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>											
15						\vdash					
17	15					\sim			\vdash		
17						\sim			\vdash		
17 30 7 0.3 * 6903 850 190 850 78 35 10 0.3 * 6003 760 250 760 100 40 12 0.6 * 6203 700 400 700 160 32 7 0.3 * 6804 760 170 760 68 37 9 0.3 * 6904 700 270 700 100 42 12 0.6 * 6004 600 390 640 150 47 14 1 * 6204 590 540 590 210 37 7 0.3 * 6805 640 190 640 76 42 9 0.3 * 6905 590 290 590 110 47 12 0.6 * 6005 550 420 550 170 30 42 7 0.3 6806 550 190	-					$\overline{}$			$\overline{}$		
17	47					Ŏ			Ŏ		
20 32 7 0.3 * 6804 760 170 760 68 37 9 0.3 * 6904 700 270 700 100 42 12 0.6 * 6004 640 390 640 150 47 14 1 * 6204 590 540 590 210 37 7 0.3 * 6805 640 190 640 76 42 9 0.3 * 6905 590 290 590 110 47 12 0.6 * 6005 550 420 550 170 52 15 1 * 6205 510 590 510 230 42 7 0.3 6806 550 190 550 77 30 47 9 0.3 6906 510 300 510 120 55 13 1 * 6006 470 560	17					Ŏ			Ŏ		
20 37 9 0.3 * 6904 700 270 700 100 42 12 0.6 * 6004 640 390 640 150 47 14 1 * 6204 590 540 590 210 37 7 0.3 * 6805 640 190 640 76 42 9 0.3 * 6905 590 290 590 110 47 12 0.6 * 6005 550 420 550 170 52 15 1 * 6205 510 590 510 230 42 7 0.3 6806 550 190 550 77 30 47 9 0.3 6906 510 300 510 120 55 13 1 * 6006 470 560 470 220 62 16 1 * 6206 430 820		40	12	0.6	* 6203	Ó	700	400	Ŏ	700	160
20 42 12 0.6 * 6004 640 390 640 150 47 14 1 * 6204 590 540 590 210 37 7 0.3 * 6805 640 190 640 76 42 9 0.3 * 6905 590 290 590 110 47 12 0.6 * 6005 550 420 550 170 52 15 1 * 6205 510 590 510 230 42 7 0.3 6806 550 190 550 77 30 47 9 0.3 6906 510 300 510 120 47 9 0.3 6906 510 300 510 120 55 13 1 * 6006 470 560 470 220 62 16 1 <t>* 6206 430 820 <t< td=""><td></td><td>32</td><td>7</td><td>0.3</td><td>* 6804</td><td>0</td><td>760</td><td>170</td><td>0</td><td>760</td><td>68</td></t<></t>		32	7	0.3	* 6804	0	760	170	0	760	68
42 12 0.6 \$6004 640 390 640 150 47 14 1 \$6204 590 540 590 210 37 7 0.3 \$6805 640 190 640 76 42 9 0.3 \$6905 590 290 590 110 47 12 0.6 \$6005 550 420 550 170 52 15 1 \$6205 510 590 510 230 42 7 0.3 6806 550 190 550 77 30 47 9 0.3 6906 510 300 510 120 55 13 1 \$6006 470 560 470 220 62 16 1 \$6206 430 820 430 330 35 62 14 1 \$6007 410 680 410 </td <td>20</td> <td>37</td> <td></td> <td>0.3</td> <td></td> <td></td> <td></td> <td>270</td> <td></td> <td>700</td> <td></td>	20	37		0.3				270		700	
25 37 7 0.3 * 6805 640 190 640 76 42 9 0.3 * 6905 590 290 590 110 47 12 0.6 * 6005 550 420 550 170 52 15 1 * 6205 510 590 510 230 42 7 0.3 6806 550 190 550 77 30 47 9 0.3 6906 510 300 510 120 55 13 1 * 6006 470 560 470 220 62 16 1 * 6206 430 820 430 330 35 62 14 1 * 6007 410 680 410 270 72 17 1.1 6207 370 1090 370 430 40 68 15 1 6008 370 710 370 280	20					0			O		
25 42 9 0.3 * 6905 590 290 590 110 47 12 0.6 * 6005 550 420 550 170 52 15 1 * 6205 510 590 510 230 42 7 0.3 6806 550 190 550 77 47 9 0.3 6906 510 300 510 120 55 13 1 * 6006 470 560 470 220 62 16 1 * 6206 430 820 430 330 35 62 14 1 * 6007 410 680 410 270 72 17 1.1 6207 370 1090 370 430 40 68 15 1 6008 370 710 370 280						O			O		
47 12 0.6 * 6005 550 420 550 170 52 15 1 * 6205 510 590 510 230 42 7 0.3 6806 550 190 550 77 47 9 0.3 6906 510 300 510 120 55 13 1 * 6006 470 560 470 220 62 16 1 * 6206 430 820 430 330 35 62 14 1 * 6007 410 680 410 270 72 17 1.1 6207 370 1090 370 430 40 68 15 1 6008 370 710 370 280						0			0		
30 47 12 0.6 \$6005 550 420 550 170 42 7 0.3 6806 550 190 550 77 47 9 0.3 6906 510 300 510 120 55 13 1 * 6006 470 560 470 220 62 16 1 * 6206 430 820 430 330 35 62 14 1 * 6007 410 680 410 270 72 17 1.1 6207 370 1090 370 430 40 68 15 1 6008 370 710 370 280	25								0		
30 42 7 0.3 6806 550 190 550 77 47 9 0.3 6906 510 300 510 120 55 13 1 * 6006 470 560 470 220 62 16 1 * 6206 430 820 430 330 35 62 14 1 * 6007 410 680 410 270 72 17 1.1 6207 370 1090 370 430 40 68 15 1 6008 370 710 370 280											
30 47 9 0.3 6906 510 300 510 120 55 13 1 * 6006 470 560 470 220 62 16 1 * 6206 430 820 430 330 35 62 14 1 * 6007 410 680 410 270 72 17 1.1 6207 370 1 090 370 430 40 68 15 1 6008 370 710 370 280						$\overline{}$			\vdash		
30 55 13 1 * 6006 470 560 470 220 62 16 1 * 6206 430 820 430 330 35 62 14 1 * 6007 410 680 410 270 72 17 1.1 6207 370 1 090 370 430 40 68 15 1 6008 370 710 370 280						$\vdash \overset{\sim}{\cap}$			$\vdash $		
62 16 1 * 6206 430 820 430 330 35 62 14 1 * 6007 410 680 410 270 72 17 1.1 6207 370 1 090 370 430 40 68 15 1 6008 370 710 370 280	30					$\overline{}$			\vdash		
35 62 14 1 * 6007 410 680 410 270 72 17 1.1 6207 370 1 090 370 430 40 68 15 1 6008 370 710 370 280						Ŏ			Ŏ		
72 17 1.1 6207 370 1 090 370 430 40 68 15 1 6008 370 710 370 280						Ŏ			Ŏ		
40 68 15 1 6008 370 710 370 280	35				-	Ŏ			Ŏ		
	40				6008	Ó	370		Ŏ		
	40	80	18	1.1	6208		330	1 240		330	490

Symbol of availability: O Available on a production-by-order basis.

Notes (1) A basic bearing number with an asterisk (*) indicates that NSK's ES1 steel has been adopted for the bearing's inner and outer ring.

(2) The limiting load is a pure radial load that has been calculated based on a bearing life of 10⁷ rotations.

Remarks 1. The radial internal clearance for bearings with bore diameters smaller than 10 mm is MC3. The radial internal clearance for bearings with bore diameters of 10 mm or larger is CN. See the radial internal clearance tables on page A10 for further details.

2. Shieled type is standard items.

15. YS Bearings with Self-Lubricating Cage

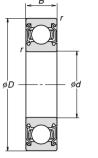
A55-A56 pages

A inquiry is the following name

YS bearing with self-lubricating cage Basic bearing number

Dimensions, Accuracy and Availability of bearings refer to the following Clause 17.

17. YS Bearings with Spacer Joints


Available on a production-

A59-A60 pages

A inquiry is the following name

YS bearing with spacer joints Basic bearing number

	Boundary of	dimensions		Basic	Availa	ability	Limiting	Limiting
Bore	Outside	Width	Chamfer		YS Bearings		speeds	load ⁽²⁾
diameter	diameter		dimension (min.)	bearing	with Self-	YS Bearings with Spacer	(reference	
d	D	B	`r´	number ⁽¹⁾	Lubricating	Joints	value)	value)
(mm)	(mm)	(mm)	(mm)		Cage		(min ⁻¹)	(N)
	9	4	0.1	684			1 000	10
4	11	4	0.15	694			1 000	16
4	12	4	0.2	604	Ó		1 000	16
	13	5	0.2	624	Ô		1 000	22
	11	5	0.15	685	Ŏ		1 000	12
-	13	4	0.2	695	Ŏ		1 000	18
5	14	5	0.2	605	Ŏ		1 000	22
	16	5	0.3	625	Ŏ		1 000	29
	13	5	0.15	686	\sim		1 000	18
	15	5	0.2	696	\vdash		1 000	22
6	17	6	0.3	606	\vdash		1 000	38
	19	6	0.3	626	$\vdash \times \vdash$	\vdash	1 000	39
		5	0.3	687	\vdash		1 000	20
7	14				\vdash			39
,	19	6	0.3	607			1 000	
	22	7	0.3	* 627			1 000	56
	16	5	0.2	688			1 000	21
8	19	6	0.3	698		Q	1 000	38
	22	7	0.3	* 608		Q	1 000	56
	24	8	0.3	* 628		\cup	1 000	57
	17	5	0.2	* 689			1 000	22
9	20	6	0.3	699			1 000	42
9	24	7	0.3	* 609			1 000	57
	26	8	0.6	* 629			1 000	78
	19	5	0.3	* 6800	0		1 000	29
40	22	6	0.3	* 6900	Ô	Ŏ	1 000	45
10	26	8	0.3	* 6000	Ŏ	Ŏ	1 000	78
	30	9	0.6	* 6200	Ŏ	Ŏ	1 000	87
	21	5	0.3	* 6801	\vdash	\vdash	1 000	32
	24	6	0.3	* 6901	\vdash	\sim	1 000	49
12	28	8	0.3	* 6001	\vdash	\vdash	1 000	87
	32	10	0.6	* 6201	\vdash	\vdash	900	110
	24	5	0.3	* 6802		\vdash	1 000	35
	28	7	0.3	* 6902	$\vdash \times \vdash$	\vdash	930	74
15				* 6002	\vdash	\sim	850	95
	32	9	0.3			\vdash		
	35	11	0.6	* 6202		O	800	130
	26	5	0.3	* 6803			930	44
17	30	7	0.3	* 6903	<u> </u>	<u> </u>	850	78
• • •	35	10	0.3	* 6003	Q	Q	760	100
	40	12	0.6	* 6203		O	700	160
	32	7	0.3	* 6804			760	68
20	37	9	0.3	* 6904			700	100
20	42	12	0.6	* 6004			640	150
	47	14	1	* 6204	0	0	590	210
	37	7	0.3	* 6805	_	Ó	640	76
25	42	9	0.3	* 6905		Ŏ	590	110
	47	12	0.6	* 6005	Ιŏ	Ŏ	550	170
	52	15	1	* 6205	Ιŏ	Ŏ	510	230
	47	9	0.3	6906		$\vdash \overset{\sim}{\sim}$	510	120
30	55	13	1	* 6006		$\vdash \times \vdash$	470	220
30			1	* 6206	$\vdash $	$\vdash $	430	330
	62	16			$\vdash \times \vdash$	$\vdash \times \vdash$		270
35	62	14	1	* 6007		$\vdash \vee \vdash$	410	
	72	17	1.1	* 6207			370	430
40	68	15	1	* 6008		\square	370	280
	80	18	1.1	* 6208	1	()	330	490

Shielded Type (example)

Symbol of availability: O Available on a production-by-order basis.

(1) A basic bearing number with an asterisk (*) indicates that NSK's ES1 steel has been adopted for the bearing's inner and outer ring bearing steel material.

(2) The limiting load is a pure radial load that has been calculated based on a bearing life of 107 rotations.

Remarks

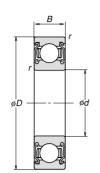
- 1. The radial internal clearances for the bearings on this page are listed below. See the radial internal clearance tables on page A10 for further details.
- <YS bearings with self-lubricating cage> Bore diameters smaller than 10 mm: 0.008 mm to 0.023 mm.
- Bore diameters of 10 mm or larger: C3
- <YS bearings with spacer joints> Bore diameters smaller than 10 mm: 0.014 mm to 0.029 mm.
- Bore diameters of 10 mm or larger: C4 2. Shieled type is standard items.

A25 **NSK**

NSK A26

of SPACEA™ Series Bearings

16. KPM Grease-Packed Bearings


Available on a productionby-order basis

A57-A58 pages

A inquiry is the following name

Basic bearing number with KPM grease

	Roundary (dimensions				I invitin o	
Б			0 1	Basic		Limiting	Limiting
Bore	Outside	Width	Chamfer dimension		Availability(2)	speeds	load ⁽³⁾
diameter	diameter		(min.)	bearing	Availability	(reference	(reference
d	D ()	B ()	` r ´	number ⁽¹⁾		value)	value)
(mm)	(mm)	(mm)	(mm)	604		(min ⁻¹)	(N)
	9	4	0.1	684	\vdash	1 000	27
4	11	4	0.15	694		1 000	40
	12	4	0.2	604	\vdash	1 000	40
	13	5	0.2	624		1 000	55
	11	5	0.15	685	\vdash	1 000	30
5	13	4	0.2	695		1 000	45
ŭ	14	5	0.2	605		1 000	56
	16	5	0.3	625		1 000	73
	13	5	0.15	686		1 000	46
6	15	5	0.2	696		1 000	56
Ŭ	17	6	0.3	606		1 000	96
	19	6	0.3	626		1 000	99
	14	5	0.15	687	Q	1 000	50
7	17	5	0.3	697	l O	1 000	68
,	19	6	0.3	607		1 000	99
	22	7	0.3	* 627		1 000	140
	16	5	0.2	688		1 000	53
8	19	6	0.3	698		1 000	95
0	22	7	0.3	* 608		1 000	140
	24	8	0.3	* 628		1 000	140
	17	5	0.2	* 689	0	1 000	56
•	20	6	0.3	699	Ŏ	1 000	100
9	24	7	0.3	* 609	Ŏ	1 000	140
	26	8	0.6	* 629	Ŏ	1 000	190
9.525	22.225	7.142	0.4	* R6		1 000	140
	19	5	0.3	* 6800	Ŏ	1 000	73
	22	6	0.3	* 6900	O(C3)	1 000	110
10	26	8	0.3	* 6000	(C3)	1 000	190
	30	9	0.6	* 6200	(C3)	1 000	210
	21	5	0.3	* 6801	(C3)	1 000	82
	24	6	0.3	* 6901	(C3)	1 000	120
12	28	8	0.3	* 6001	O(C3)	1 000	210
	32	10	0.6	* 6201	(C3)	1 000	290
	24	5	0.3	* 6802	(C3)	1 000	88
	28	7	0.3	* 6902	(C3)	1 000	180
15	32	9	0.3	* 6002	(C3)	1 000	230
	35	11	0.6	* 6202	(C3)	1 000	320
	26	5	0.3	* 6803	(C3)	1 000	110
	30	7	0.3	* 6903	(C3)	1 000	190
17	35	10	0.3	* 6003	(C3)	1 000	250
	40	12	0.6	* 6203	(C3)	1 000	400
	32	7	0.3	* 6804	(C3)	1 000	170
	37	9	0.3	* 6904	(C3)	1 000	270
20	42	12	0.6	* 6004	(C3)	1 000	390
	47	14	1	* 6204	(C3)	1 000	540
-	37	7	0.3	* 6805	(C3)	1 000	190
	42	9	0.3	* 6905	(C3)	1 000	290
25	47	12	0.6	* 6005	(C3)	1 000	420
	52	15	1	* 6205	(C3)	1 000	590
	42	7	0.3	6806	(03)	1 000	190
	47	9	0.3	6906	$\vdash $	1 000	300
30	55	13	1	* 6006	(C3)	1 000	560
	62	16	1	* 6206	(C3)	1 000	820
	62	14	1	* 6007		1 000	680
35	72	17	1.1	6207	(C3)	930	1 090
	68	15	1.1	6008	\vdash	920	710
40	80	18	1.1	6208	$\vdash $	830	1 240
	- 00	10	1.1	3200		030	1 240

Shielded Type (example)

Symbol of availability: O Available on a production-by-order basis.

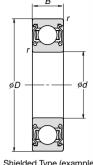
(1) A basic bearing number with an asterisk (*) indicates that NSK's ES1 steel has been adopted for the bearing's inner and

(2) Some of bearings may have a radial internal clearance of C3, which is indicated as so with parentheses in the "Availability" column.

(3) The limiting load is a pure radial load that has been calculated based on a bearing life of 107 rotations.

1. The radial internal clearance for bearings with bore diameters smaller than 10 mm is MC3. The radial internal clearance for bearings with bore diameters of 10 mm or larger is CN. See the radial internal clearance tables on page A10 for further

2. Sheleded type is standard items.


18. SJ Bearings

Available on a productionby-order basis

A61-A62 pages

A inquiry is the following name

Basic bearing number

Shielded Type (example)

0.053-0.106

		Boundary of	dimensions						Limiting	Radial
	Bore diameter d (mm)	Outside diameter D (mm)	Width B (mm)	Chamfer dimension (min.) r (mm)	Basid bearin numbe	ng	Availability	Limiting speeds (reference value) (min-1)	load ⁽²⁾ (reference value) (N)	internal clearance (min)
	8	22	7	0.3	* 6	08	0	1 000	56	0.037-0.080
	10	26	8	0.3	* 60	00	\circ	1 000	78	0.037-0.080
	10	30	9	0.6	* 62	00	0	1 000	87	0.037-0.060
	12	28	8	0.3	* 60	01	\circ	1 000	87	0.045-0.090
	12	32	10	0.6	* 62	01	\circ	900	110	0.045-0.090
_	15	32	9	0.3	* 60	02	0	850	95	0.045-0.090
	15	35	11	0.6	* 62	02	0	800	130	0.045-0.090
	17	35	10	0.3	* 60	03	\circ	760	100	0.045-0.090
	17	40	12	0.6	* 62	03	Ó	700	160	0.045-0.090
-	20	42	12	0.6	* 60	04	Ó	640	150	0.048-0.096
	20	47	14	1	* 62	04	0	590	210	0.040-0.090

* 6006

Symbol of availability: O Available on a production-by-order basis.

13

Notes (1) A basic bearing number with an asterisk (*) indicates that NSK's ES1 steel has been adopted for the bearing's inner and outer ring.

(2) The limiting load is a pure radial load that has been calculated based on a bearing life of 10⁷ rotations.

Remarks: Shielded type is standard items.

30

19. Titanium Alloy Bearings

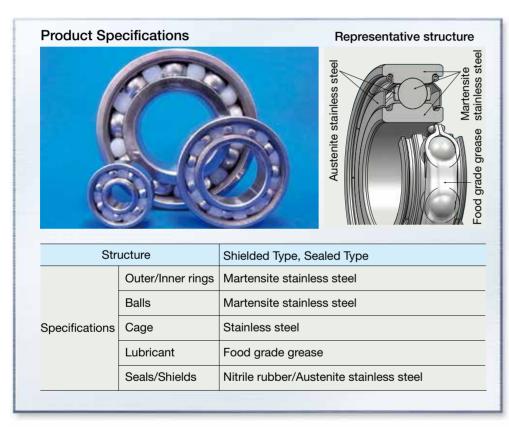
55

Available on a production-

tions A63-A64 pages

470

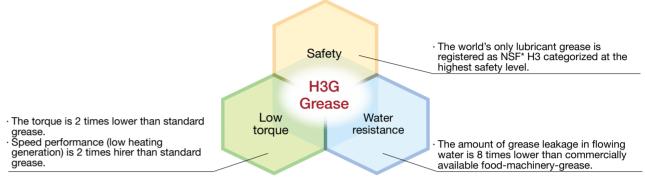
This bearing product is available on a production-by-order basis.


Please contact NSK for more information.

1. Food Grade Grease-Packed Bearings Page A11-A12 Dimensional Page A11-

These Stainless steel bearings, employ food-grade grease registered as NSF* for improved safety, and are suitable for food processing machinery and pharmaceutical manufacturing equipment.

*NSF (National Sanitation Foundation International): U.S. non-profit third party accreditation organization that is internationally recognized in the field of public safety and health.


Applications: Food processing machinery, pharmaceutical manufacturing equipment

Operating Instructions and Notes

- Bearing should not be unpacked unit immediately before mounting.
- See the tables of SPACEA™ bearing nomenclature on page A11 and A12 for the limiting loads and limiting rotational speeds.
- Do not eat food-grade grease because this grease is not foodstuffs.
- All comments referencing certain values or degrees of performance in this catalog are intended to be used as a reference only. NSK provides this guide "As Is" without warranty of any kind, either expressed or implied.

Features

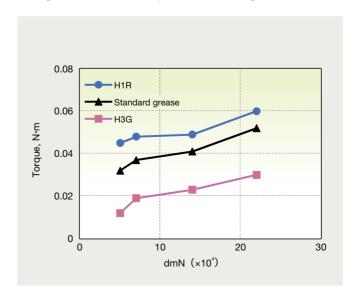
- H3G grease is registered as NSF* H3 categorized at the hightest safety level, and is acceptable to use area contacted with
- H3G grease exhibits low torque and water resistance so that this grease provides low leakage in water environments.
- H3G grease is applicable temperature up to 90°C, H1R grease is up to 120°C and H1B grease is up to 200°C.
- H1R grease and H1B grease acquire Halal certification that is the food regulations of Islamic religious law.
- H1R grease and H1B grease acquire KOSHER certification that is the food regulations of Jewish religious law.

< NSF Categories for Lubricants Used in Food Processing Equipment > Safety Level

High H3 Lubricants designed to be contact with foodstuffs. The highest safety level

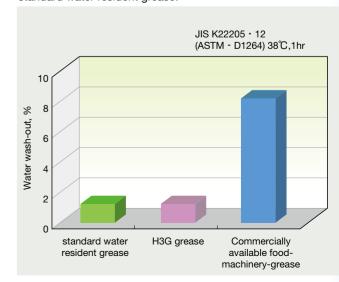
H1 Lubricants usable in locations with possible incidental contact with foodstuffs

Low H2 Lubricants usable in locations without direct contact with foodstuffs


Performance

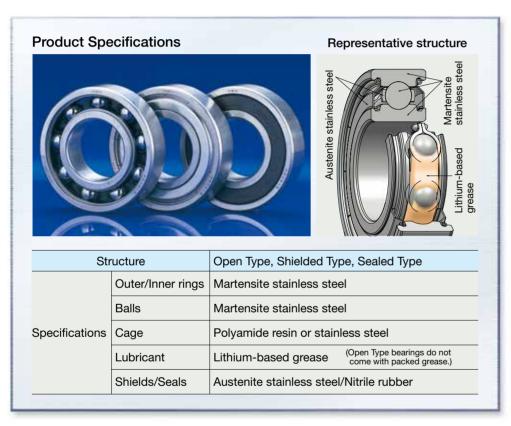
Properties of grease

Name	H3G	H1R	H1B
NSF categories	Н3	H1	H1
Base oil	High-grade food oil	Synthetic hydrocarbon oil	Fluorine oil
Thickener	Food additives	Aluminum alloy soap	PTFE
Kinematic viscosity (mm²/s, 40°C)	14.8	150	415
Consistency	255	280	280
Water wash-out	1.0%	7.6%	0.1%
Operating temperature	0 – 90°C	0 – 120°C	0 – 200°C


Results of torque test

H3G grease have lower torque than standard grease.

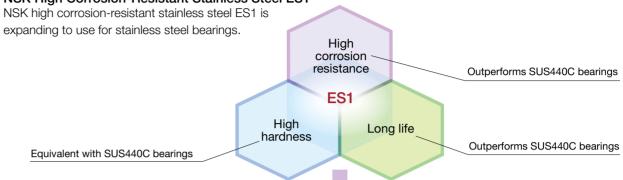
Results of water resistance test


H3G grease have water resistance same as or more than standard water resident grease.

2. Stainless Steel Bearings Page A13-A16 Dimensions, accuracy and availability of bearings.

Stainless steel bearings, the standard products of the NSK SPACEA™ Series for special environments, are suitable for high-humidity environments.

Applications: Equipment used in high-humidity environments: food processing, cleaning, chemical processing, fishery equipment

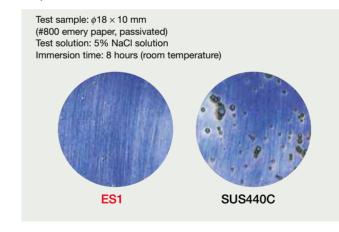

Operating Instructions and Notes

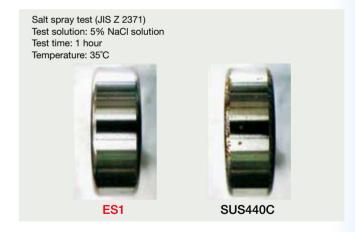
- For use in normal atmospheric conditions only.
- Bearings stocked as standard inventory items are prepacked with NS7 (lithium-based) grease.
- Bearing should not be unpacked until immediately before mounting.
- See the tables of SPACEA™ bearing nomenclature on pages A13 through A16 for the limiting loads and limiting rotational
- The performance of bearing is affected by environments and conditions. Bearings can not be used in certain corrosive environment and conditions. Confirm environment and conditions where bearings are used.
- All comments referencing certain values or degrees of performance in this catalog are intended to be used as a reference only. NSK provides this guide "As Is" without warranty of any kind, either expressed or implied.

Features

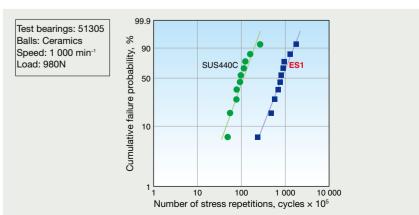
- For use in normal atmosphere only, grease lubrication
- Higher corrosion resistance than bearing steel
- Open Type, Shielded Type, and Contact-seal Type are available (see A13-A16)

NSK High Corrosion-Resistant Stainless Steel ES1


Performance


Material	Hardness, HRC	Corrosion resistance(1)	Features
NSK high corrosion-resistant stainless steel ES1	58-62	0	NSK-developed steel
Martensite stainless steel SUS440C	58-62	Δ	Ordinary stainless steel
Bearing steel SUJ2	60–64	×	Ordinary steel for bearings

Note (1) Comparative assessment between three kinds of materials


Corrosion resistance of ES1

Outperforms SUS440C in corrosion resistance

Immersion rolling fatigue life Outperforms SUS440C in durability

3. Stainless Steel Angular Contact Ball Bearings

For use in Normal atmosphere and Clean environments

For use in Vacuum, Clean and High-temperature environments

Page A17

Features

- Outperforms standard bearing steel in terms of corrosion resistance.
- Achieves high running accuracy to ISO tolerance class P5.
- Supplied as bearings for universal matching with light preload when mounted in a face-to-face (DF) arrangement or back-to-back (DB) arrangement.
- Stainless steel angular contact ball bearings suitable for cleanroom environments in normal atmospheric conditions. Stainless steel angular contact ball bearings for cleanroom, vacuum, and high-temperature environments. Suitable for use in vacuum equipment or cleanroom applications operating under high-temperature conditions.

Specifications of Bearings

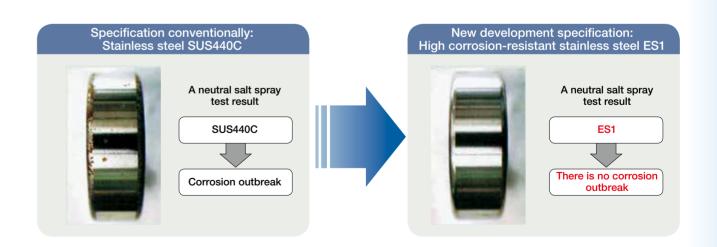
Applie	cation environment	Normal atmosphere and Clean environments			
	Contact angle	30° (symbol: A) or 25° (symbol: A5)			
Material	Outer/Inner rings, Balls	Marten	site stainless steel		
ivialeriai	Cage	Polyamide resin (Cage symbol: TYN)	Natural PEEK resin (symbol:T4N) or Stainless steel		
	Arrangement	Universal arrangement (single row)			
	Preload	Light preload			
Accuracy		P5			

Operating Instructions and Notes

- Bearing should not be unpacked until immediately before mounting.
- Apply a coating of grease most appropriate for bearings used in normal atmospheric conditions or cleanroom environments after cleaning the bearings and removing the anti-corrosion agent.
- Apply a coating of grease most appropriate for bearings used in vacuum, cleanroom, or high-temperature environments. These bearings have already been degreased and have already been washed to remove the anti-corrosion agent.
- See the tables of SPACEA™ bearing nomenclature on page A17 for the limiting loads and limiting rotational speeds.
- All comments referencing certain values or degrees of performance in this catalog are intended to be used as a reference only. NSK provides this guide "As Is" without warranty of any kind, either expressed or implied.

4. Stainless Steel Self-Aligning Ball Bearings

For use in High corrosion-resistant stainless steel ES1

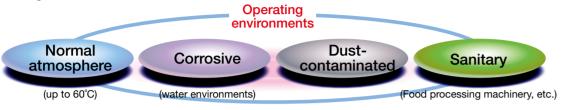


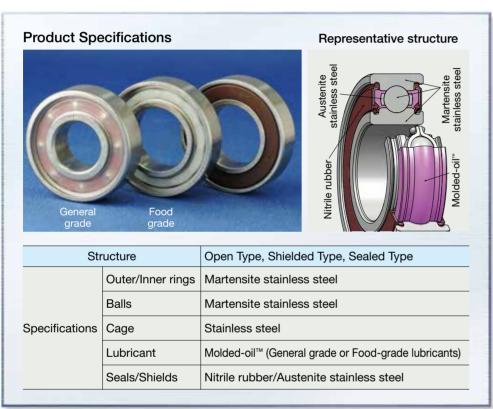
Applications: Liquid-crystal bases cleaning equipment, film cleaning systems, etching equipment, conveyance equipment

Features

- Highly resistant to corrosion through the use of ES1 highly corrosion-resistant stainless steel.
- Self-aligning with the ability to accommodate misalignment of the axis and housing ranging from 4 to 7 degrees.

Operating Instructions and Notes


- Bearing should not be unpacked until immediately before mounting.
- Apply a coating of grease most appropriate for the bearing after cleaning the bearings and removing the anti-corrosion agent.
- See the tables of SPACEA™ bearing nomenclature on page A17 for the limiting loads and limiting rotational speeds.
- All comments referencing certain values or degrees of performance in this catalog are intended to be used as a reference only. NSK provides this guide "As Is" without warranty of any kind, either expressed or implied.

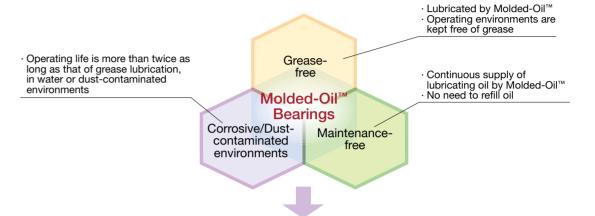

Corrosive, sanitary and dust-contaminated environments

5. Molded-Oil™ Bearings

Page A18

Molded-oil™ bearings, made of stainless steel, are lubricated with NSK's original oil-impregnated material, Molded-oil™, and are suitable for corrosive and dust-contaminated environments in normal atmosphere. In addition, food-grade lubricants are avaiable.

Applications: Semiconductor cleaning equipment, liquid-crystal bases, hard-disk cleaning equipment, food processing machinery, various conveyor lines


Operating Instructions and Notes

- For use in normal atmospheric conditions only.
- Whereas the solid lubricant used in these bearings will melt at a temperature of 120°C, take care not to exceed temperatures of 100°C when heating this bearing during the shrink-fit process for mounting.
- A radial load is required for the bearings to properly rotate. The minimum radial load recommended for maintaining proper rotation is at least 1 % of the basic dynamic load rating.
- Bearing should not be unpacked until immediately before mounting.
- \bullet The scope of application (limiting load, limiting $d_m n$ value) is listed in the table to
- Avoid exposure to organic solvents with a degreasing effect.
- The performance of bearing is affected by environments and conditions. Bearings can not be used in certain corrosive environment and conditions. Confirm environment and conditions where bearings are used.
- All comments referencing certain values or degrees of performance in this catalog are intended to be used as a reference only. NSK provides this guide "As Is" without warranty of any kind, either expressed or implied.

The scope of Molded-oil™ bearings Between 1% and 5%, inclusive, of the stainless steel bearing load rating C_H <Load more than 1% is necessary.> Applied load Limiting rotationa <In the case of more than 35 degrees please refer to chart below.> Note (1) $d_{\text{m}}n$ = (Bearing bore diameter, mm + Bearing outside diameter, mm) $\div 2 \times$ Rotational speed, min⁻¹ 200 000 150 00 100 000 50 000 Ambinet temperature °C

Features

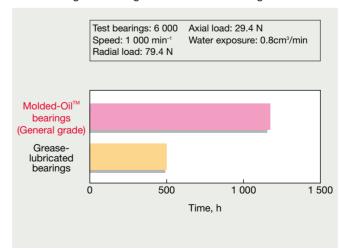
- Molded-Oil™—provides continuous supply of lubrication oil
- Grease-free property with no oil refilling keeps operating environments clean
- Operating life more than twice as long as grease lubrication, in water or dust-contaminated environments
- Contact-seal Type available in standard inventory (see A18)
- NSF H1 food-grade lubricants for food processing machinery are available.

Performance

100 μm Close-up of Molded-Oil

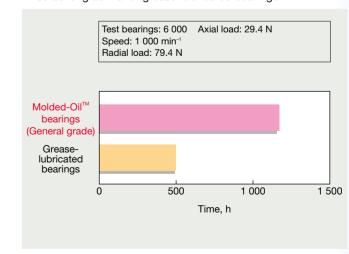
Portion containing high proportion of polyolefin

Polyolefin is used for packaging food in supermarkets, replacing dioxin-generating vinyl chloride.


Portion containing high proportion of lubricating oil

Food-grade lubricant of Molded-Oil™ uses lubricating oil registered for NSF H1* category.

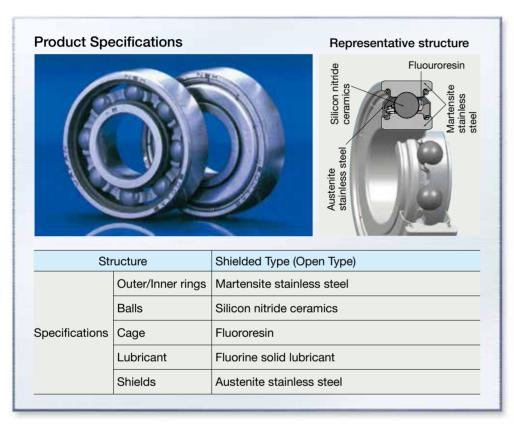
*NSF lubricants Category Code H1: Intended contact with foodstuffs.


Durability under wet conditions

Molded-Oil™ bearings have an operating life that is more than twice as long as that of grease-lubricated bearings.

Durability in water-immersed conditions

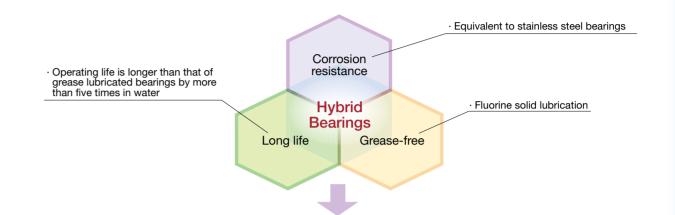
Molded-Oil™ bearings have an operating life that is more than twice as long as that of grease-lubricated bearings.



6. Hybrid Bearings

Page A19

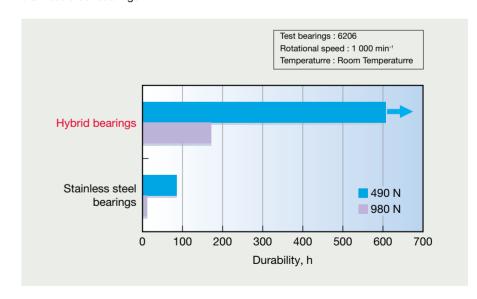
Hybrid bearings, combining ceramic balls and fluororesin self-lubricating cage, are suitable for corrosive environments in normal atmosphere.


Applications: Devices and conveyor lines used in water-spray and water environments such as food processing and fishery equipment

Operating Instructions and Notes

- Bearing should not be unpacked until immediately before mounting.
- See the tables of SPACEA™ bearing nomenclature on page A19 for the limiting loads and limiting rotational speeds.
- A special clearance is adopted for the radial internal clearance. See the tables of SPACEA™ bearing nomenclature on page A19.
- The performance of bearing is affected by environments and conditions. Bearings can not be used in certain corrosive environment and conditions. Confirm environment and conditions where bearings are used.
- All comments referencing certain values or degrees of performance in this catalog are intended to be used as a reference only. NSK provides this guide "As Is" without warranty of any kind, either expressed or implied.

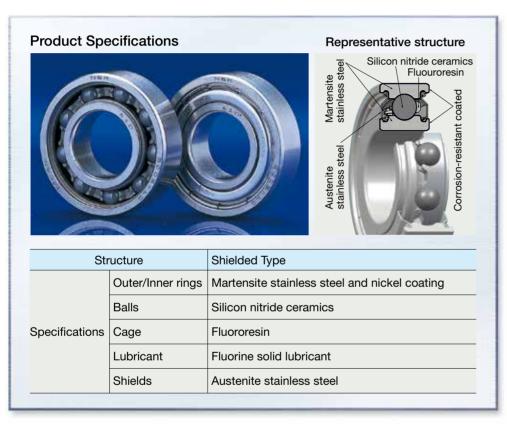
Features


- Grease-free, fluorine solid lubricant
- Operating life more than five times as long as that of stainless steel bearings in water-immersed environments

Performance

Durability in water-immersed environments

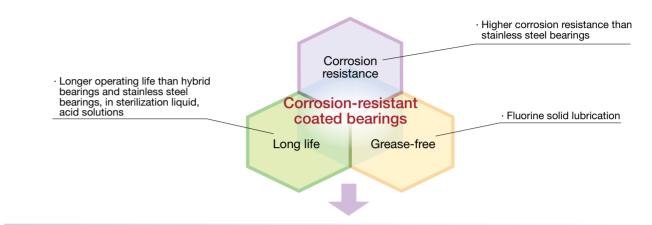
Hybrid bearings have an operating life more than five times as long as that of stainless steel bearings.



7. Corrosion-Resistant Coated Bearings

Page A19

Corrosion-resistant coated bearings are coated with a nickel coating on the outer and inner rings to enhance corrosion resistance and durability, and are suitable for corrosive environments in normal atmosphere.


Applications: Semiconductor/FPD/HD cleaning equipment, etching equipment, food processing machinery, various conveyor lines

Operating Instructions and Notes

- Bearing should not be unpacked until immediately before mounting.
- See the tables of SPACEA™ bearing nomenclature on page A19 for the limiting loads and limiting rotational speeds.
- A special clearance is adopted for the radial internal clearance. See the tables of SPACEA™ bearing nomenclature on page A19.
- Dimensional tolerances of the bore and the outside diameter for corrosion-resistant coated bearings may deviate from the JISO standard for coating thickness by a maximum of 5 µm in diameter.
- The performance of bearing is affected by environments and conditions. Bearings can not be used in certain corrosive environment and conditions. Confirm environment and conditions where bearings are used.
- All comments referencing certain values or degrees of performance in this catalog are intended to be used as a reference only. NSK provides this guide "As Is" without warranty of any kind, either expressed or implied.

Features

- Grease-free, fluorine solid lubricant
- Higher corrosion-resistance and longer life than stainless steel bearings or hybrid bearings
- Resistant to sterilization liquids such as hydrogen peroxide and oxonia

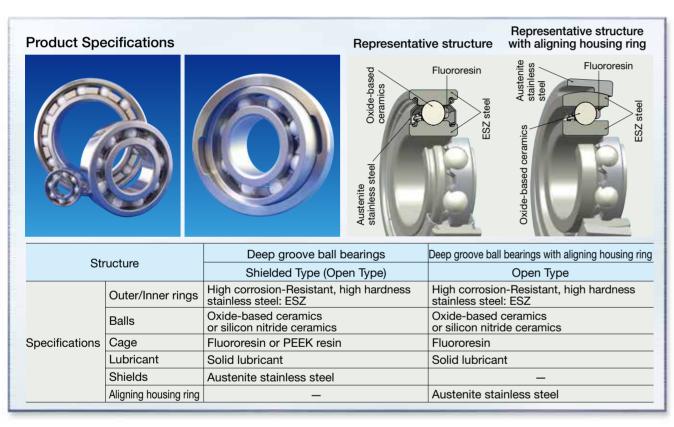
Performance

Corrosion-resistant coated

Stainless steel bearing SUS440C

Durability in NaCl solution

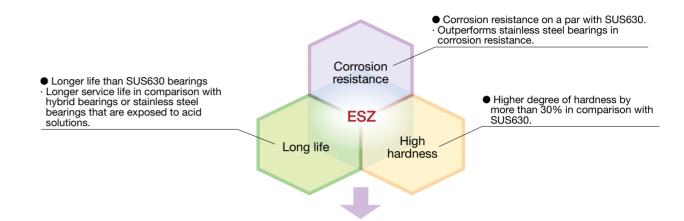
In NaCl solution, corrosion-resistant coated bearings have an operating life more than four times as long as that of hybrid bearings, and more than 12 times as long as that of stainless steel bearings.


8. ESZ Bearings

Page A20

ESZ bearings are highly corrosion-resistant, high-hardness stainless steel bearings offering corrosion resistance on a par with SUS630, and offering a higher degree of hardness by than 30 % in comparison with SUS630.

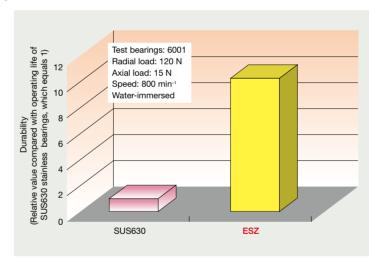
The bearings are suitable for corrosive environments in normal atmosphere.

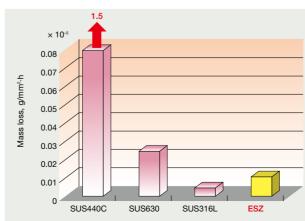

Applications: High function film conveyor, cleaning equipment, food processing machinery, various conveyor lines

Operating Instructions and Notes

- Bearing should not be unpacked until immediately before mounting.
- See the tables of SPACEA™ bearing nomenclature on page A20 for the limiting loads and limiting rotational speeds.
- C3 is the standard radial internal clearance.
- When bearings with aligning housing ring are used under radial loads, move the phase between the slots at the end face of the aligning housing ring and direction of radial load.
- Fit between the aligning housing ring and housing should be loose with a sufficient amount of clearance to ensure smooth, self-aligning performance.
- Please contact NSK if a bearing with an aligning housing ring will be mounted to a vertical shaft.
- The performance of bearing is affected by environments and conditions. Bearings can not be used in certain corrosive environment and conditions. Confirm environment and conditions where bearings are used.
- All comments referencing certain values or degrees of performance in this catalog are intended to be used as a reference only. NSK provides this guide "As Is" without warranty of any kind, either expressed or implied.

Features


- Product lineup includes standard deep groove ball bearings and deep groove ball bearings with aligning housing ring.
- Corrosion resistance on a par with SUS630. Able to withstand exposure to sodium hypochlorite solutions.
- Hardness increased by more than 30 % in comparison with SUS630 material.
- Able to accommodate bending that is associated with wider rollers and allows for misalignment of the shaft and housing.


Performance

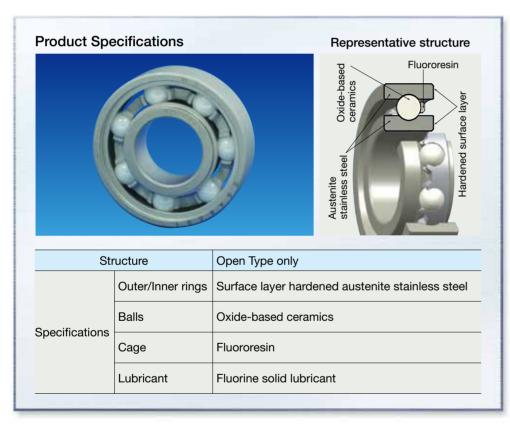
Durability in water-immersed conditions

Longer life than SUS630 bearings

Results of 5% sulfuric acid immersion test Equal to or higher than SUS630

Results of sodium hypochlorite solution immersion test


A41 NSK


Corrosive environments and Non-magnetic reguirement

9. ESA Bearings

Page A21

ESA Bearings, combining austenite stainless steel and hardened surface layers, possess high hardness, corrosion resistance and non-magnetic properties, and are suitable for corrosive environments and non-magnetic requirement in normal atmosphere and vacuum.

Applications: Corrosive environments: Cleaning equipment (except for etching equipment) Non-magnetic requirement: Electron beam drawing devices, electron beam exposure equipment, inspection equipment

Operating Instructions and Notes

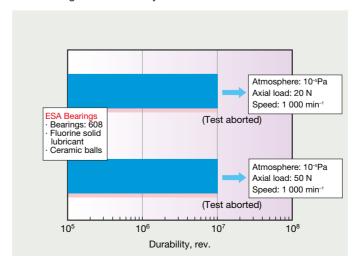
- Bearing should not be unpacked until immediately before mounting.
- See the tables of SPACEA™ bearing nomenclature on page A21 for the limiting loads and limiting rotational speeds.
- A special clearance is adopted for the radial internal clearance. See the tables of SPACEA[™] bearing nomenclature on page A21.
- The performance of bearing is affected by environments and conditions. Bearings can not be used in certain corrosive environment and conditions. Confirm environment and conditions where bearings are used.
- All comments referencing certain values or degrees of performance in this catalog are intended to be used as a reference only. NSK provides this guide "As Is" without warranty of any kind, either expressed or implied.

Features Outer/Inner rings: Austenite stainless steel Grease-free, fluorine solid lubricant Higher corrosion resistance and hardness than conventional stainless steel SUS440C Non-magnetic (equivalent to conventional non-magnetic stainless steel bearings) ■ Applicable from normal atmosphere up to 10⁻⁶ Pa Hardened surface layer provided by special heat treatment High · Harder than SUS440C hardness (hardened surface layer HV800-1000) · Equal to or higher than SUS316 or SUS304 **ESA Bearings** High Noncorrosion magnetic Equivalent to conventional nonresistance magnetic stainless steel bearings (relative permeability 1.01 or less)

Performance

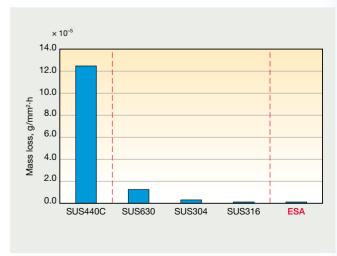
Comparison with conventional materials

Material	Hardness (HV)(1)	Relative permeability	Corrosion ⁽³⁾ resistance	Features
ESA	800–1 000(2)	1.01 or less	0	NSK-developed steel
SUS440C	650–750	Ferromagnetic	Δ	Ordinary stainless steel
Non-magnetic stainless steel	450	1.01 or less	Δ	Due to its properties, it is difficult to machine, requiring advanced processing technology
Silicon nitride	1 500	1.001 or less	0	Due to its properties, it is difficult to machine, requiring advanced processing technology; high cost


Notes (1) Indicated in HV hardness for comparison

(2) Hardened surface layer

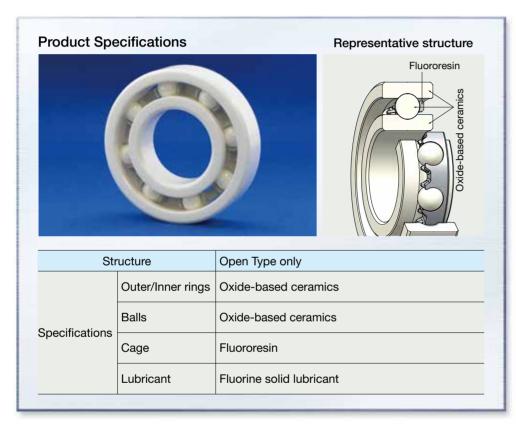
(3) Comparative assessment between four kinds of materials


Durability

ESA bearings have durability of more than 10⁷ rotations.

Results of 20% sulfuric acid immersion test

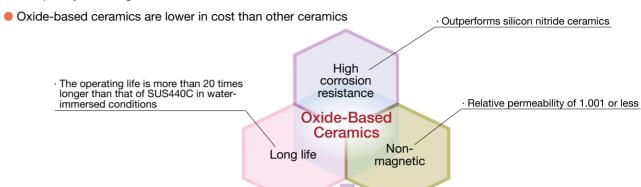
Corrosion resistance is equivalent with SUS316, 304



Corrosive environments and Non-magnetic reguirement

10. All-Ceramic Bearings

With ceramic outer/inner rings and balls, all-ceramic bearings have self-lubricating fluororesin cage and are suitable for corrosive environments and non-magnetic requirement in normal atmosphere.


Applications: Corrosive environments: Semiconductor production machinery, chemical processing equipment, metal plating equipment Non-magnetic requirement: Electron beam drawing devices, electron beam exposure equipment, inspection equipment

Operating Instructions and Notes

- Bearing should not be unpacked until immediately before mounting.
- See the tables of SPACEA™ bearing nomenclature on page A21 for the limiting loads and limiting rotational speeds.
- Due to the fragility of ceramic materials, please observe the following precautions:
- **★**Do not drop or strike the bearing.
- ★Allow for sufficient clearance when installing the bearing.
- ★Do not strike the bearing with a hammer or other tool when installing the bearing to a shaft or axle box.
- A special clearance is adopted for the radial internal clearance. See the tables of SPACEA[™] bearing nomenclature on page A21.
- The performance of bearing is affected by environments and conditions. Bearings can not be used in certain corrosive environment and conditions. Confirm environment and conditions where bearings are used.
- All comments referencing certain values or degrees of performance in this catalog are intended to be used as a reference only. NSK provides this guide "As Is" without warranty of any kind, either expressed or implied.

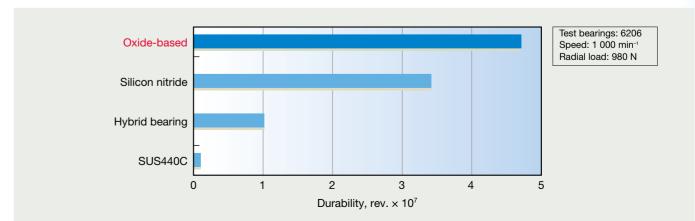
Features

- Grease-free, fluorine solid lubricant
- Higher corrosion resistance and longer life than conventional stainless steel bearings and hybrid bearings
- Completely non-magnetic

Performance

Comparison of performance and cost

Oxide-based ceramics (ZrO₂) are:

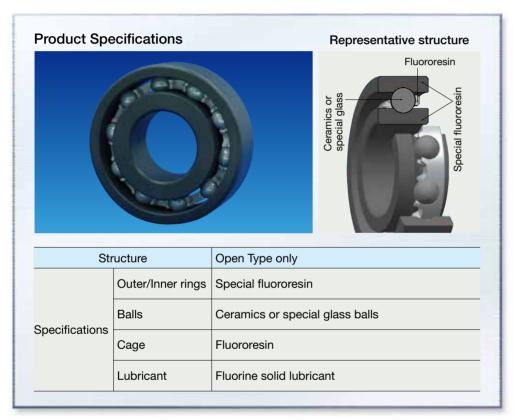

- ★More corrosion-resistant than stainless steel SUS440C or silicon nitride ceramics (Si₃N_d)
- ★Lower in price than other ceramics

	Evaluation item	Ceran	Ceramics		
	Evaluation item	Oxide-based	Silicon nitride	SUS440C	
	3% Sulfuric acid (room temperature)	0	Δ	×	
Corrosion resistance	8% Hydrochloric acid (room temperature)	0	Δ	×	
	5% Fluoric acid (room temperature)	Δ	Δ	×	
Relative permeability		1.001 or less	1.001 or less	Ferromagnetic body	
	Cost	•	A	*	

Corrosion resistance evaluation ···· 🔾: Slightly corroded 🛆: Partially corroded X: Corroded COST······Low $\leftarrow \bigstar < \bullet < \blacktriangle \Rightarrow High$

Durability in water-immersed conditions

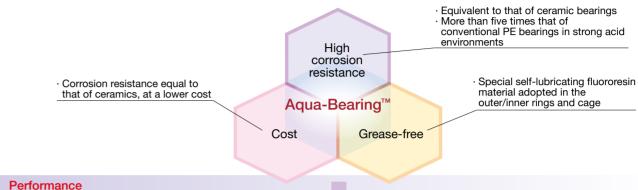
Oxide-based ceramics (ZrO₂) are 20 times more durable than SUS440C under water-immersed conditions.


Corrosive environments (Strong acid and Alkali)

11. Aqua-Bearing™

Page A22

Aqua-Bearing[™] features a special fluororesin for outer/inner rings and cage equipped to meet a broad range of applications in water, alkali and strong acid environments. Aqua-Bearing™ is suitable for corrosive environments exclusively in normal atmosphere.

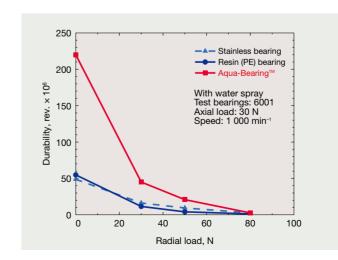

Applications: Semiconductor cleaning equipment, liquid-crystal bases cleaning equipment, hard-disk cleaning equipment, metal plating equipment, etching equipment, food processing machinery

Operating Instructions and Notes

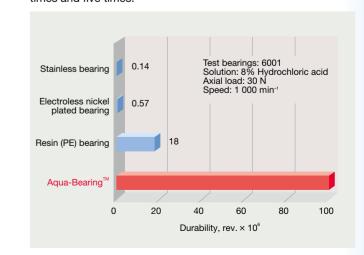
- For use in normal atmospheric conditions only.
- Bearing should not be unpacked until immediately before mounting.
- See the tables of SPACEA™ bearing nomenclature on page A22 for the limiting loads and limiting rotational speeds.
- The Aqua-Bearing™ adopts special standards for dimensional accuracy of the inner ring bore diameter, outside diameter of the outer ring, and radial internal clearance. See the tables of SPACEA™ bearing nomenclature on page A22.
- Please note that the bearing fit is large due to the linear expansion coefficient of the special fluororesin material $(\alpha = 1.7 \times 10^{-4})^{\circ}$ C).
- Please note that the bearing cannot be used in certain applications due the density and/or type of medical drug.
- All comments referencing certain values or degrees of performance in this catalog are intended to be used as a reference only. NSK provides this guide "As Is" without warranty of any kind, either expressed or implied.

Features

- High corrosion resistance equivalent to that of ceramic bearings
- Excellent durability in acid solvents; over 1 000 times more resistant than SUS440C stainless bearings and over five times more resistant than conventional resin (PE) bearings
- Special self-lubricating fluororesin makes grease or oil unnecessary

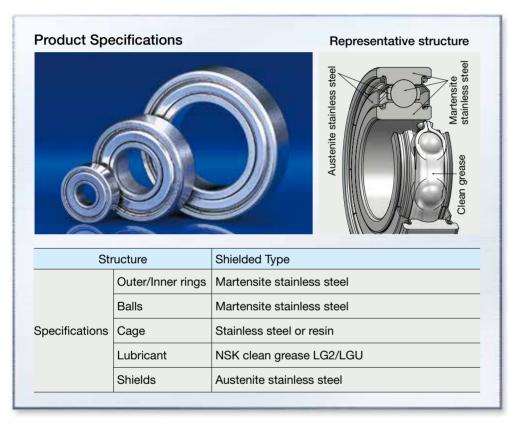

Comparison of corrosion resistance

Corrosion resistance equal to or higher than all-ceramic bearings (oxide-base)


	Aqua-Bearing™	PE	All-ceramic bearings (Oxide based)
5% Sulfuric acid	Δ	×	Δ
8% Hydrochloric acid	Δ	×	Δ
Aqua regalis	0	×	0
15% Acetic acid	0	Δ	0
70% Aqua fortis	Δ	×	Δ
70% Phasphoric acid	0	Δ	0
40% Hydrogen peroxide solution	0	Δ	0

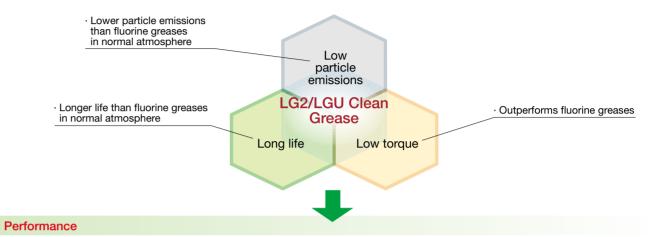
Corrosion resistance evaluation

Results of water-spray durability tests Remarkable durability can be observed under light-load conditions.


Results of durability tests in strong acid solution Durability is higher than that of SUS440C bearings and conventional resin bearings by, respectively, more than 1 000 times and five times.

12. LG2/LGU Grease-Packed Bearings

LG2/LGU clean grease-packed stainless steel bearings are suitable for clean environments in normal atmosphere.

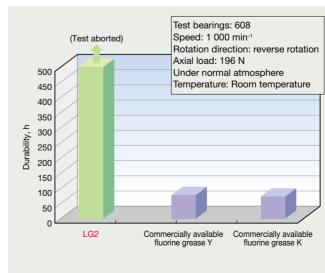

Applications: Equipment in clean rooms

Operating Instructions and Notes

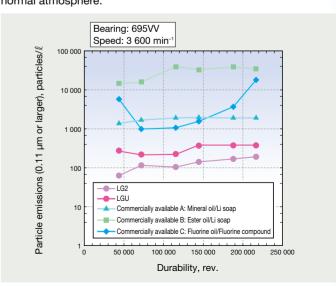
- The LG2/LGU grease products are for use in normal atmospheric conditions only.
- Bearing should not be unpacked until immediately before mounting.
- See the tables of SPACEA™ bearing nomenclature on pages A23 and A24 for the limiting loads and limiting rotational speeds.
- Cleanliness may vary depending on operating conditions, surrounding components, and other factors.
- All comments referencing certain values or degrees of performance in this catalog are intended to be used as a reference only. NSK provides this guide "As Is" without warranty of any kind, either expressed or implied.

Features

- Clean grease lubrication for use in normal atmosphere only
- Lower particle emissions, lower torque, longer operating life and higher corrosion resistance than commercially available fluorine greases
- LGU grease is free of metallic elements



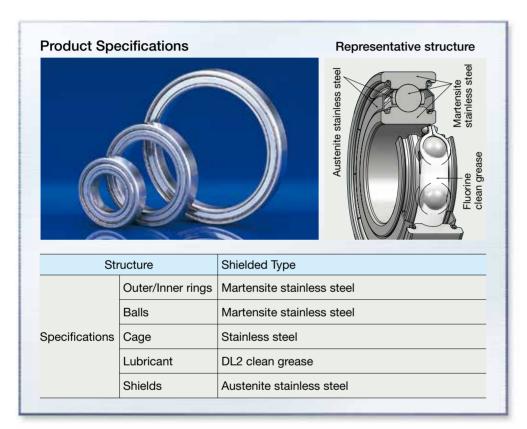
Properties of grease


Operating environment	For use in normal	I atmosphere only	
Product	LG2	LGU	
Base oil	Mineral oil and synthetic hydrocarbon oil	Synthetic hydrocarbon oil	
Thickener	Lithium soap	Diurea	
Kinematic viscosity (mm²/s, 40°C)	32	96	
Consistency	199	201	
Maximum operating temperature, °C	up to 70	up to 120	

LGU grease is free of metallic elements

Results of durability tests in normal atmosphere LG2/LGU grease has a longer life than any other grease in normal atmosphere.

Results of particle emission tests in normal atmosphere LG2/LGU grease are lowest in particle emissions in normal atmosphere.



Clean and Vacuum environments

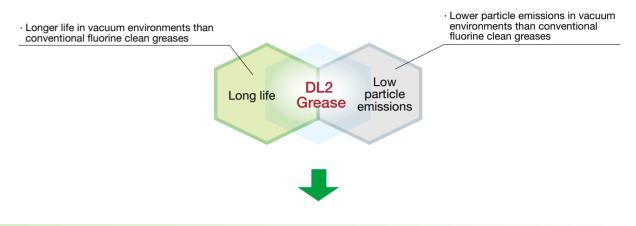
13. DL2 Grease-Packed Bearings Page A23-A24 Dimensions, accurate and availability of bearings.

DL2 clean grease-packed stainless steel bearings are suitable for clean environments from normal atmosphere up to vacuum.

Applications: Liquid crystal and semiconductor manufacturing equipment, hard disk manufacturing equipment

Operating Instructions and Notes

- Bearing should not be unpacked until immediately before mounting.
- The scope of application (degree of vacuum, temperature) is listed in the table to the right.
- See the tables of SPACEA™ bearing nomenclature on page A23 and A24 for the limiting loads and limiting rotational speeds.
- Ensure an optimum radial internal clearance for maximum rotational performance by applying a fit to the bearing that takes into consideration bearing load, operating temperatures, materials of the shaft and/or housing (due to coefficient of linear expansion), etc.
- Cleanliness may vary depending on operating conditions, surrounding components, and other factors.
- All comments referencing certain values or degrees of performance in this catalog are intended to be used as a reference only. NSK provides this guide "As Is" without warranty of any kind, either expressed or implied.

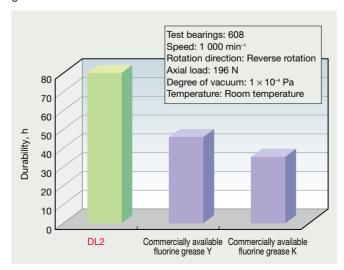

10-4

Fluorine grease

100 Temperature, °C

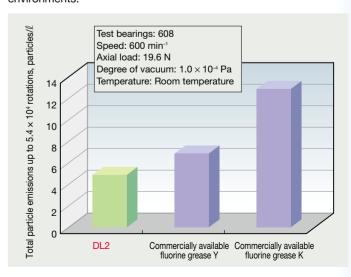
Features

- Fluorine clean grease lubrication
- More suitable for vacuum and at higher temperatures than LG2/LGU greases
- Lower particle emissions and longer life than conventional fluorine clean greases


Performance

Properties of grease

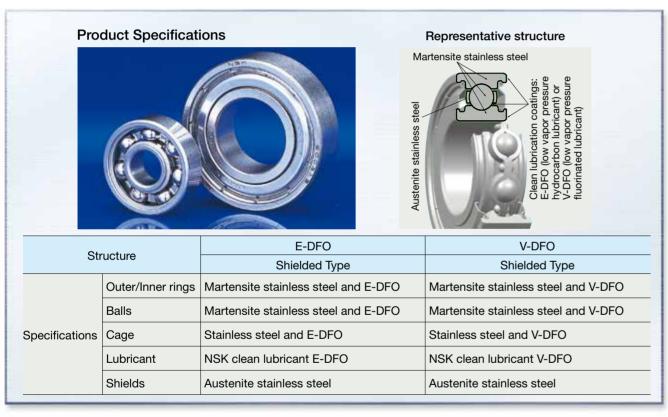
Operating environments	From normal atmosphere up to vacuum
Name	DL2
Base oil	Fluorine oil
Thickener	PTFE
Kinematic viscosity (mm²/s, 40°C)	200
Consistency	280
Maximum operating temperature, °C	up to 200


Results of durability tests in vacuum

DL2 clean grease has a longer operating life than any other grease in vacuum environments.

Results of particle emission tests in vacuum

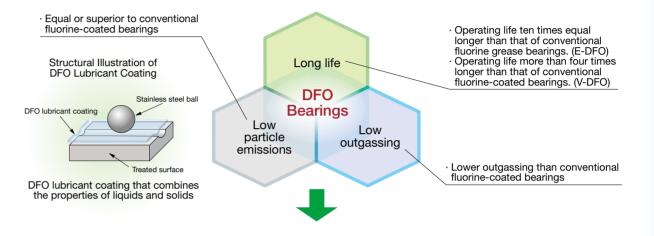
DL2 clean grease is lowest in particle emissions in vacuum environments.


14. E-DFO Bearings, V-DFO Bearings

Page A25

Newly developed specification DFO bearings that take advantage of clean lubrication coatings: V-DFO and E-DFO. The V-DFO specification uses low vapor pressure fluorinated lubricant while the E-DFO specification uses a low vapor pressure hydrocarbon lubricant. Both specifications are applied to the inner and outer rings, balls, and cage to deliver superior cleanliness and long service life.

The bearings are suitable for cleanroom environments ranging from normal atmospheric conditions to vacuum conditions.


Applications: Liquid crystal and semiconductor manufacturing equipment, hard disk manufacturing equipment, solar cell manufacturing equipment, robots for vacuum environments

Operating Instructions and Notes

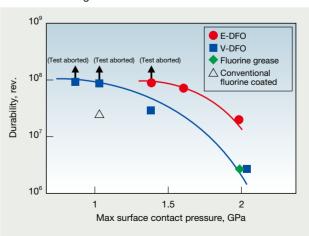
- Bearing should not be unpacked until immediately before mounting.
- Avoid storing the bearing for an overly extended or lengthy amount of time.
- Wear clean gloves when handling.
- Mount the bearing without washing.
- Avoid exposure to any oil or moisture.
- See the tables of SPACEA™ bearing nomenclature on page A25 for the limiting loads and limiting rotational speeds.
- Cleanliness may vary depending on operating conditions, surrounding components, and other factors.
- All comments referencing certain values or degrees of performance in this catalog are intended to be used as a reference only. NSK provides this guide "As Is" without warranty of any kind, either expressed or implied.

Features

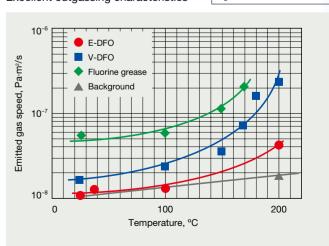
- Operating life more than four times longer than conventional fluorine-coated bearings
- Lower particle emissions and outgassing than MoS₂ solid lubricated bearings
- Applicable in environments for which lubricants containing metallic elements such as MoS₂ are not suitable
- Applicable from normal atmosphere up to vacum 10⁻⁷ Pa (room temperature), although the degree of vacuum in which the bearings can be used varies according to the operating temperature

Performance

Comparison of operating environments for clean lubrication coatings E-DFO and V-DFO:

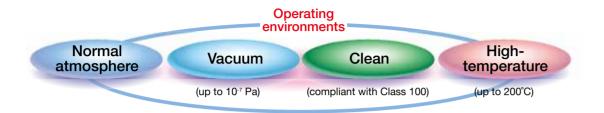

Conditions	E-DFO	V-DFO
Corrosive gas	×	0
Vacuum	(up to 150°C)	(up to 150°C)
Normal atmospher	(up to 50°C)	(up to 200°C)
Limiting Load	(up to 5%)	(up to 2%)

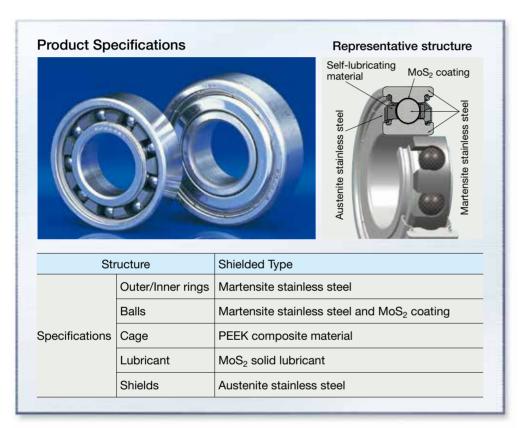
Highly durable under vacuum conditions


1. E-DFO offers about ten times more durability than conventional fluorine grease.

2. V-DFO offers four times or more durability than that of a fluorine coated bearing

Test conditions Test bearings: 708 Speed: 3 000 min Degree of vacuum: 2 × 10⁻⁴ Pa

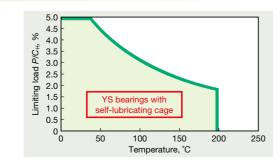

 Outgassing characteristics under high-temperature conditions Test bearings: 608 Excellent outgassing characteristics Degree of vacuum: 8 × 10-4 Pa



15. YS Bearings with Self-Lubricating Cage

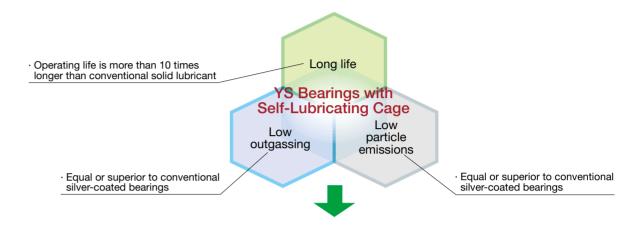
Clean and Vacuum environments

YS bearings for clean environments have newly developed self-lubricating cage, delivering high cleanliness and long life. These bearings are suitable for clean environments from normal atmosphere up to vacuum.



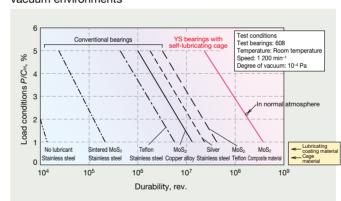
Applications: Vapor deposition equipment, sputtering equipment, etching equipment, vacuum pumps

Operating Instructions and Notes

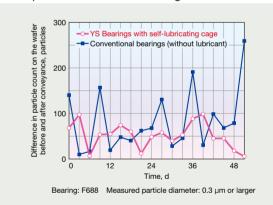

- Bearing should not be unpacked until immediately before mounting.
- Avoid storing the bearing for an overly extended or lengthy amount of time.
- Avoid exposure to any oil or moisture.
- The scope of application (limiting load, temperature) is listed in the table to
- See the tables of SPACEA™ bearing nomenclature on page A26 for the limiting loads and limiting rotational speeds.
- Ensure an optimum radial internal clearance for maximum rotational performance by applying a fit to the bearing that takes into consideration bearing load, operating temperatures, materials of the shaft and/or housing (due to coefficient of linear expansion), etc.

- Cleanliness may vary depending on operating conditions, surrounding components, and other factors.
- All comments referencing certain values or degrees of performance in this catalog are intended to be used as a reference only. NSK provides this guide "As Is" without warranty of any kind, either expressed or implied.

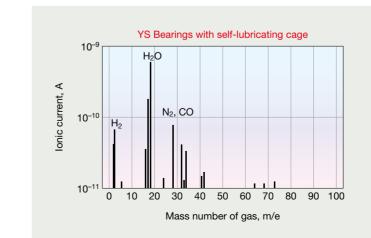
Features

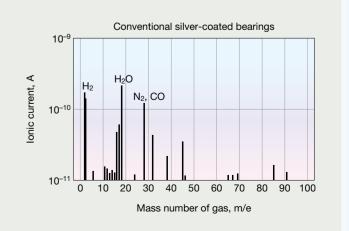

- Utilizes newly developed, long-life MoS₂ self-lubricating cage
- Operating life is longer than that of conventional high-temperature solid-lubricant bearings by more than 10 times
- Particle emissions and outgassing are as low as that of conventional silver-coated bearings
- Applicable from normal atmosphere up to vacuum 10⁻⁷ Pa

Performance


Durability

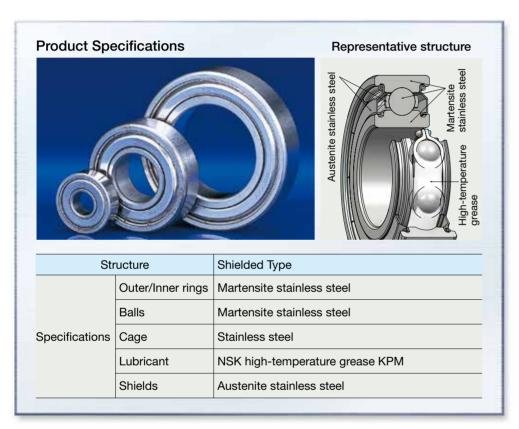
Over ten times more durable than conventional bearings for vacuum environments


Particle emissions evaluation in actual line of vacuum robots for wafer conveyance


Equal or superior to conventional bearings for vacuum environments

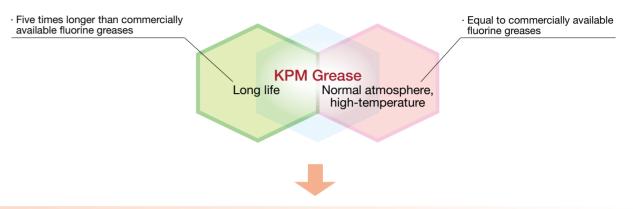
Outgassing characteristics


Virtually no outgassing of high mass number species; similar to conventional (silver-coated) bearings



16. KPM Grease-Packed Bearings

These high-temperature bearings are grease-packed with NSK's long-life, high-temperature grease KPM, for use in normal atmosphere only.


Applications: Copying machines, kilns, high-temperature conveyance equipment, other equipment for high-temperature environments

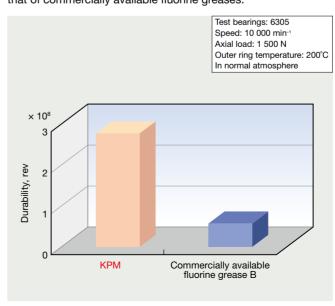
Operating Instructions and Notes

- KPM grease is to be used in normal atmospheric conditions only.
- Not applicable to cleanroom environments.
- Bearing should not be unpacked until immediately before mounting.
- See the tables of SPACEA™ bearing nomenclature on page A27 for the limiting loads and limiting rotational speeds.
- Ensure an optimum radial internal clearance for maximum rotational performance by applying a fit to the bearing that takes into consideration bearing load, operating temperatures, materials of the shaft and/or housing (due to coefficient of linear
- All comments referencing certain values or degrees of performance in this catalog are intended to be used as a reference only. NSK provides this guide "As Is" without warranty of any kind, either expressed or implied.

Features

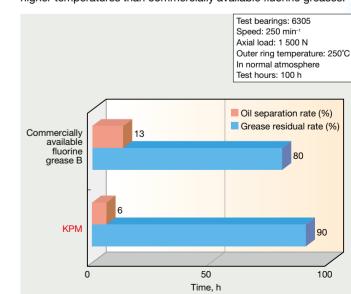
- Applicable in high-temperature environments, up to 230°C
- Longer operating life than commercially available fluorine greases (five times longer at 200°C)
- Longer operating life than that of solid lubricant high-temperature bearings

Performance


Properties of grease

	Name	NSK high-temperature grease KPM	Commercially available fluorine grease B
	Base oil	Fluorine oil	Fluorine oil
	Thickener	PTFE	PTFE
	Kinematic viscosity (mm²/s, 40°C)	420	390
	Consistency	290	280
	Maximum operating temperature, °C	230	230

KPM: NSK-developed grease for use in normal atmosphere only


Durability

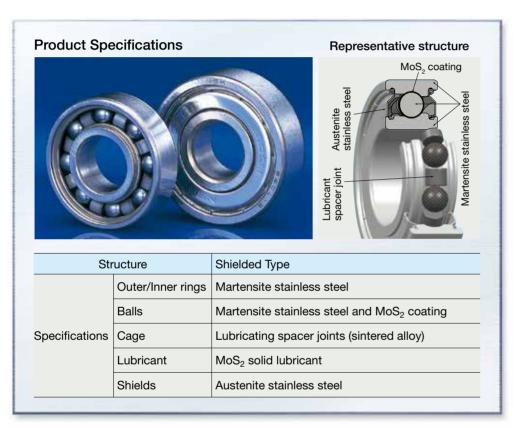
KPM's operating life is approximately five times longer than that of commercially available fluorine greases.

Oil separation and grease residual rates

KPM is highly heat resistant, with lower oil separation rates at higher temperatures than commercially available fluorine greases.

17. YS Bearings with Spacer Joints

are suitable for high-temperature and vacuum environments.


YS bearings with spacer joints

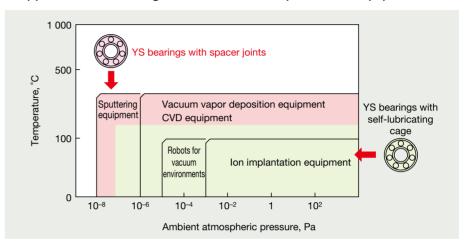
Temperature, °C

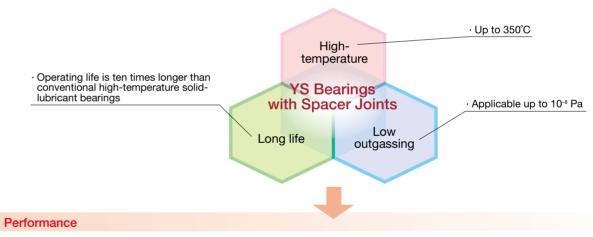
150 200 250 300 350 400

YS bearings with spacer joints made of an alloy-based self-lubricating material (sintered alloy) between balls. They

Operating environments High-Vacuum temperature (up to 10-8 Pa) (up to 350°C)

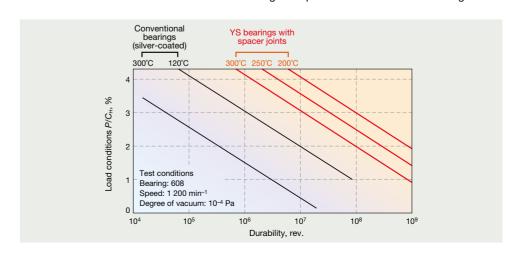
Applications: Ion implantation equipment, sputtering equipment, vacuum vapor deposition equipment


Operating Instructions and Notes


- For use in vacuum environments.
- Restrictions apply to bearings mounted to a vertical shaft due to a notch in the outer and inner rings. (Refer to the manual that is provided with the bearing.)
- Bearing should not be unpacked until immediately before mounting.
- Avoid storing the bearing for an overly extended or lengthy amount of time.
- Avoid exposure to any oil or moisture.
- The scope of application (limiting load, temperature) is listed in the table to the right.
- See the tables of SPACEA™ bearing nomenclature on page A26 for the limiting loads and limiting rotational speeds.
- Ensure an optimum radial internal clearance for maximum rotational performance by applying a fit to the bearing that takes into consideration bearing load, operating temperatures, materials of the shaft and/or housing (due to coefficient of linear expansion), etc.
- All comments referencing certain values or degrees of performance in this catalog are intended to be used as a reference only. NSK provides this guide "As Is" without warranty of any kind, either expressed or implied.

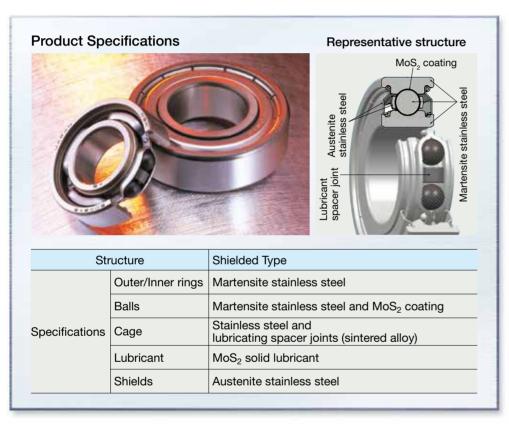
Features

- Grease-free, MoS₂ solid lubrication
- Applicable from vacuum up to 10⁻⁸ Pa and temperatures up to 350°C
- Operating life is longer than that of conventional high-temperature solid-lubricant bearings by more than 10 times


Applications of bearings for semiconductor production equipment

Durability

Over ten times more durable than conventional high-temperature solid-lubricant bearings.


High-temperature environments (~400°C)

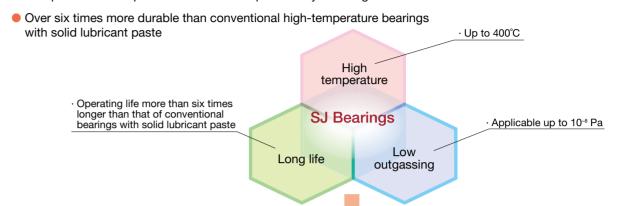
18. SJ Bearings

Page A28

SJ bearings have a "peapod" structure, with solid lubricant spacer joints mounted between two balls in cage pockets. These bearings are suitable for high-temperature environments from normal atmosphere up to vacuum.

Applications: Vacuum vapor deposition equipment, kilns, kiln cars, steel plants, high-temperature conveyance equipment

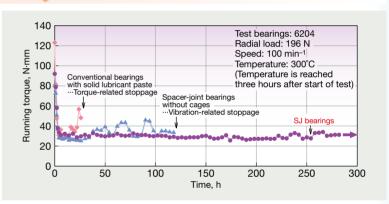
Operating Instructions and Notes


- Do not use this bearing in an environment that risks exposure to excessive moisture or humidity.
- Bearing should not be unpacked until immediately before mounting.
- Avoid storing the bearing for an overly extended or lengthy amount of time.
- Avoid exposure to any oil or moisture.
- The scope of application (limiting load, temperature) is listed in the table to the right.
- See the tables of SPACEA™ bearing nomenclature on page A28 for the limiting loads and limiting rotational speeds.
- Ensure an optimum radial internal clearance for maximum rotational performance by applying a fit to the bearing that takes into consideration
- bearing load, operating temperatures, materials of the shaft and/or housing (due to coefficient of linear expansion), etc.

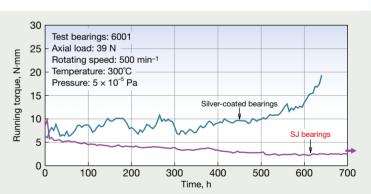
100 150 200 250 300 350 400

• All comments referencing certain values or degrees of performance in this catalog are intended to be used as a reference only. NSK provides this guide "As Is" without warranty of any kind, either expressed or implied.

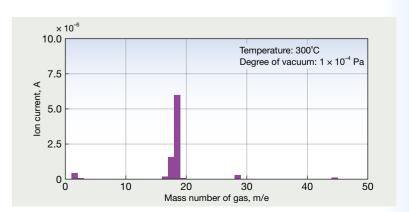
Features


- Grease-free, MoS₂ solid lubricant
- Applicable from normal atmosphere up to vacuum 10-8 Pa and temperatures up to 400°C
- "Peapod" structure provides excellent torque stability and long life

Performance

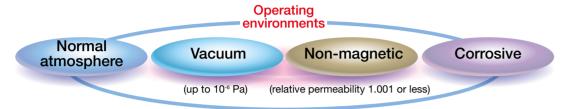

Durability

More than six times more durable than bearings with conventional solid lubricant paste, and more than twice as durable as conventional cageless bearings with spacer joints.


Durability of bearings in vacuum conditions

Outperforms silver-coated bearings in durability and torque stability.

Outgassing in vacuum conditions

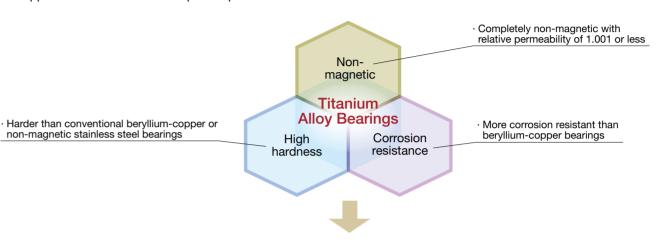

In high-temperature and vacuum environments, outgassing from chemical decomposition of solid lubricant spacer joints was not confirmed. Therefore, SJ bearings have no pollution concerns.



19. Titanium Alloy Bearings

Titanium alloy bearings have special titanium alloy inner/outer rings and ceramic balls, making them completely non-magnetic (relative permeability 1.001 or less). These bearings are suitable for non-magnetic requirement from normal atmosphere up to vacuum.

Applications: Electron beam drawing devices, electron beam exposure equipment, inspection equipment.


Operating Instructions and Notes

- Applicable to corrosive environments.
- Electrically conductive bearings are also available.
- Bearing should not be unpacked until immediately before mounting.
- lacktriangle The scope of application (limiting load, limiting $d_{\rm m}n$ value) is listed in the table to the right.
- All comments referencing certain values or degrees of performance in this catalog are intended to be used as a reference only. NSK provides this guide "As Is" without warranty of any kind, either expressed or implied.

The scope Titanium alloy bearings										
Limiting rotational speed $d_m n^{(i)}$ 20 000										
Note (1) $d_m n = $ (Bearing bore diameter, mm + Bearing outside diameter,										

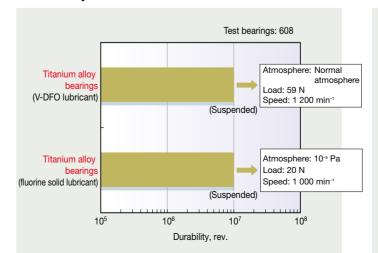
Features

- Grease-free, fluorine solid lubricant
- Completely non-magnetic with relative permeability of 1.001 or less
- More corrosion resistant than conventional non-magnetic beryllium-copper alloy bearings
- Free of harmful chemical substance such as beryllium in conventional beryllium-copper alloy
- Harder than conventional beryllium-copper alloy
- Applicable from normal atmosphere up to vacuum 10⁻⁶ Pa

Performance

Durability

Comparison with conventional bearings

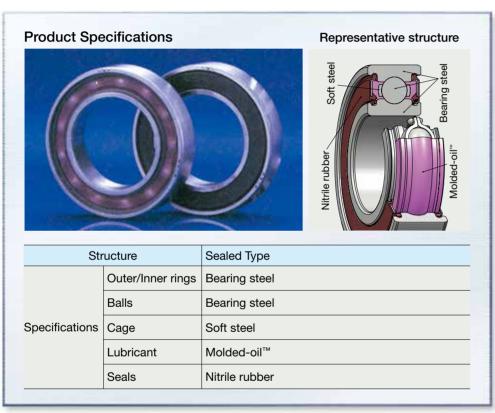

Material	Hardness (HV)(1)	Relative permeability	Corrosion ⁽²⁾ resistance	Features
Special titanium alloy	450-500	1.001 or less	0	NSK-developed material
SUS440C	670	Ferromagnetic	Δ	Commercially available stainless steel
Non-magnetic stainless steel	450	1.01 or less	Δ	Due to its properties, it is difficult to machine, requiring advanced processing technology
Beryllium-copper alloy	320-400	1.001 or less	0	Generates harmful oxidation by-products
Silicon nitride ceramics	1 500	1.001 or less	0	High in cost


Notes (1) Indicated in HV hardness for comparison

(2) Comparative assessment between five kinds of materials

Results of corrosion resistance test

The special titanium alloy is more corrosion resistant than SUS630 or beryllium-copper alloys



20. Molded-Oil™ Bearings (For Dust-Contaminated Environments)

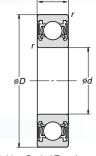
Molded-Oil™ bearings, lubricated with NSK's own oil-impregnated material, are suitable in dust-contaminated environments; for use in normal atmosphere only.

Applications: Food processing equipment, agricultural machines, woodworking machines, various conveyor lines

Operating Instructions and Notes

- For use in normal atmospheric conditions only.
- Whereas the solid lubricant used in these bearings will melt at a temperature of 120°C, take care not to exceed temperatures of 100°C when heating this bearing during the shrink-fit process for mounting.
- A radial load is required for the bearings to properly rotate. The minimum radial load recommended for maintaining proper rotation is at least 1 % of the basic dynamic load rating.
- Bearing should not be unpacked until immediately before mounting.
- See the SPACEA™ "5. Molded-Oil™ Bearings (stainless steel)" on pages A35 and A36 for applications requiring corrosion resistance.
- The scope of application (limiting load, limiting $d_m n$ value) is listed in the table to
- All comments referencing certain values or degrees of performance in this catalog are intended to be used as a reference only. NSK provides this guide "As Is" without warranty of any kind, either expressed or implied.

Between 1% and 5%, inclusive, of the stainless steel bearing load rating CH Applied load <Load more than 1% is necessary.> 150 000 <In the case of more than 35 degrees. please refer to chart below.> Note (1) $d_m n =$ (Bearing bore diameter, mm + Bearing outside diameter, mm) ÷ 2 × Rotational speed, mir 200 000 150 00 100 000 50 000


The scope of Molded-oil™ bearings

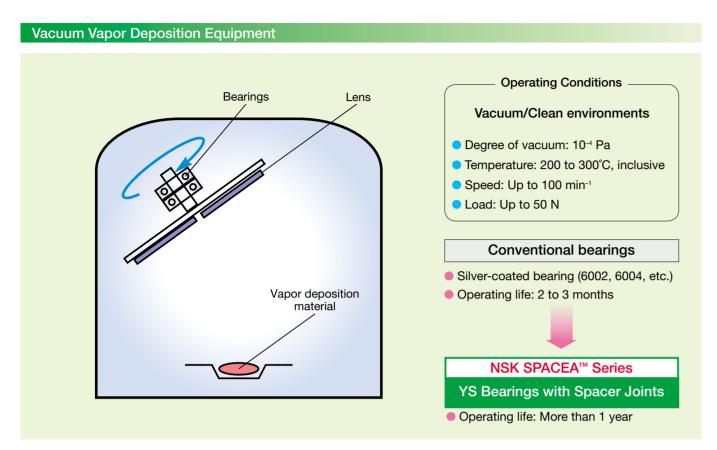
Features

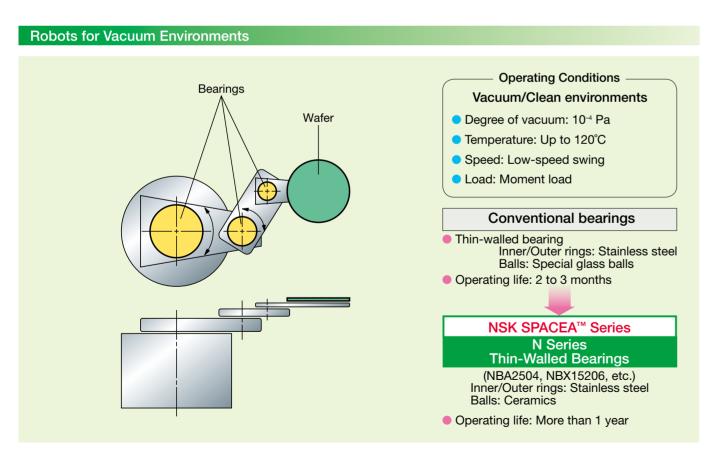
- Continuous controlled flow of oil from the Molded-Oil™ inside the bearing provides
- Grease-free property keeps operating environments clean with no oil refilling
- Operating life in dust-contaminated environments more than twice as long as that of grease lubricant
- Contact-seal Type is a standard inventory item (See the table below)

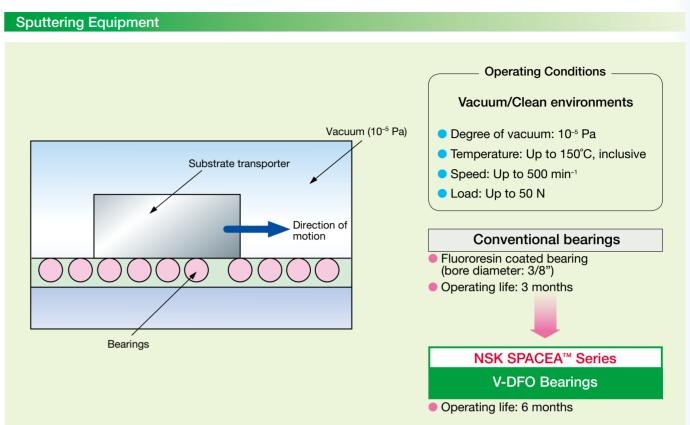
Table of Dimensions and Availability (Contact-seal Type)

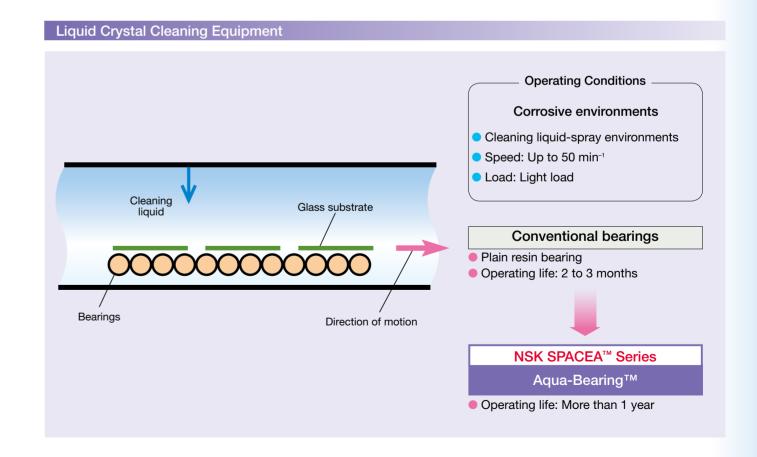
● A inquiry is the next name: Molded-Oil™ bearing Basic bearing number

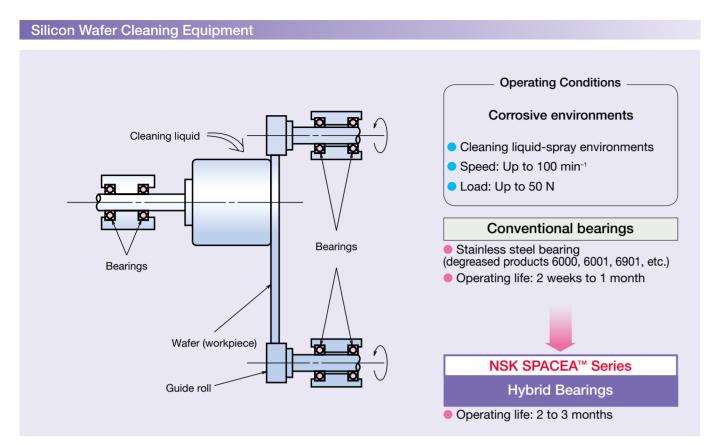
Rubber Sealed Type (example)

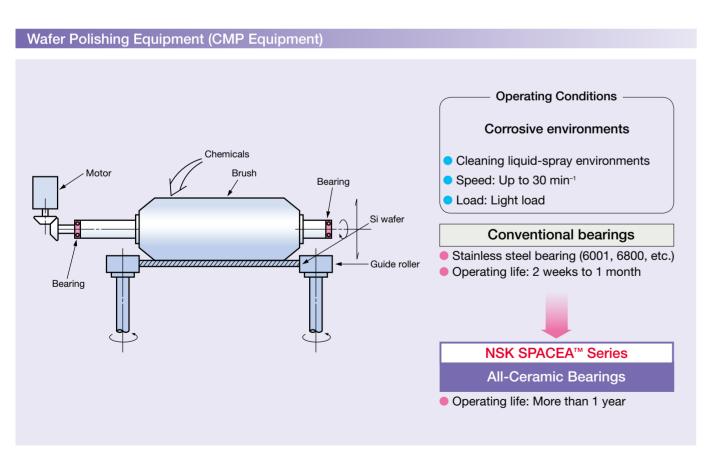

	Boundary	dimensions				Limiting	
Bore diameter	Outside diameter D	Width B	Chamfer dimension (min.)	Basic bearing number	Availability	speeds ⁽¹⁾ (reference value)	Applied load ⁽²⁾ (reference value)
(mm)	(mm)	(mm)	(mm)	6000		(min ⁻¹)	(N) 25 – 110
10	22	6	0.3	6900		9 370	
10	26	8	0.3	6000		8 330	40 - 190
	30	9	0.6	6200		7 500	45 - 210
40	24	6	0.3	6901	•	8 330	25 - 120
12	28	8	0.3	6001	•	7 500	45 – 210
	32	10	0.6	6201	•	6 810	60 – 290
	28	7	0.3	6902	•	6 970	40 – 180
15	32	9	0.3	6002	•	6 380	50 – 230
	35	11	0.6	6202	•	6 000	65 – 320
17	35	10	0.3	6003	•	5 760	55 – 250
	40	12	0.6	6203	•	5 260	85 – 400
20	42	12	0.6	6004	•	4 830	80 – 390
	47	14	1	6204	•	4 470	110 – 540
	47	12	0.6	6005	•	4 160	90 – 420
25	52	15	1	6205	•	3 890	120 – 590
	62	17	1.1	6305	•	3 440	180 – 870
	55	13	1	6006	•	3 520	120 – 560
30	62	16	1	6206	•	3 260	170 – 820
	72	19	1.1	6306	•	2 940	230 - 1130
	62	14	1	6007	•	3 090	140 – 680
35	72	17	1.1	6207	•	2 800	220 - 1 090
	80	21	1.5	6307	•	2 600	290 - 1410
	68	15	1	6008	•	2 770	150 - 710
40	80	18	1.1	6208	•	2 500	250 - 1 240
	90	23	1.5	6308	•	2 300	350 - 1720
	75	16	1	6009	•	2 500	180 - 890
45	85	19	1.1	6209	•	2 300	270 - 1 330
	100	25	1.5	9309	•	2 060	450 - 2 250
	80	16	1	6010	•	2 300	190 - 920
50	90	20	1.1	6210		2 140	300 - 1490
	110	27	2	6310	•	1 870	520 - 2600

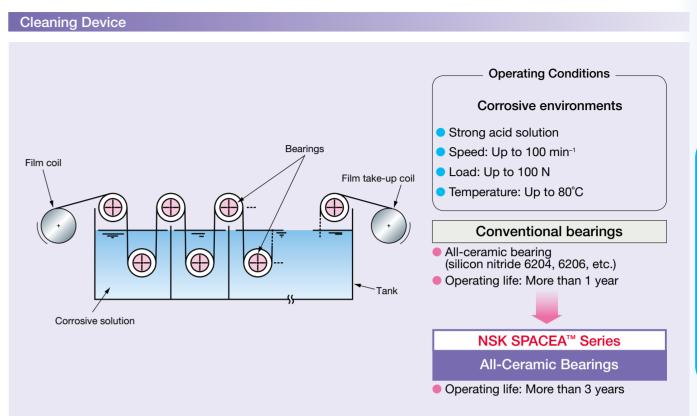

Symbol of availability: Stocked as standard inventory items. (3)

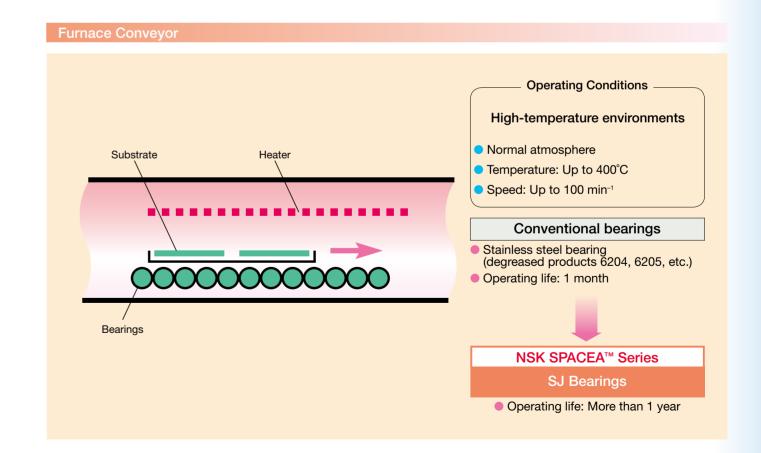

- Notes (1) Limiting speed of these bearings has been calculated for 25°C operating conditions. Limiting speeds will be slower for operating conditions of 35°C or higher. (Refer to the previous page for further details.)
 - (2) The applied load is a pure radial load that has been calculated based on a bearing life of 10⁷ rotations.
- (3) Orders placed for standard inventory items may incur some delay in actual delivery. Furthermore, products shipped from Japan may incur additional delays. Remarks 1. The radial internal clearance for the bearings on this page is CN. See the radial internal clearance tables on page A10 for further details.
 - 2. Rubber sealed type is standard inventory items.

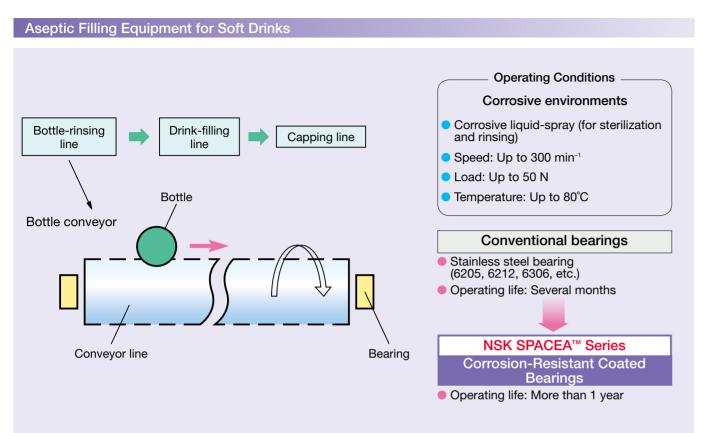

E Applications of SPACEA™ Series Bearings

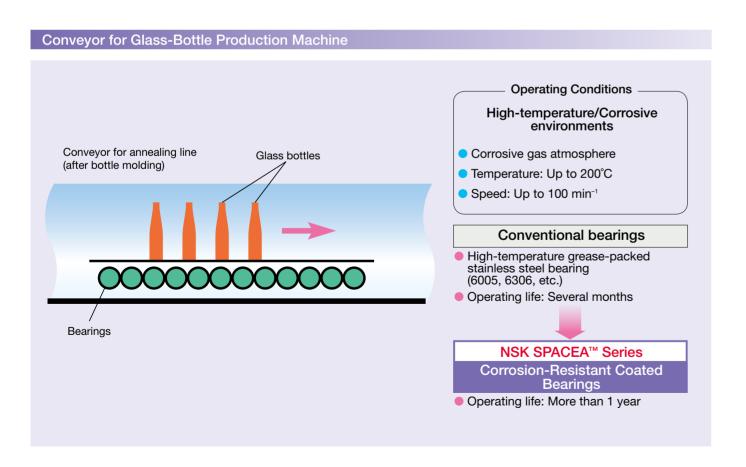


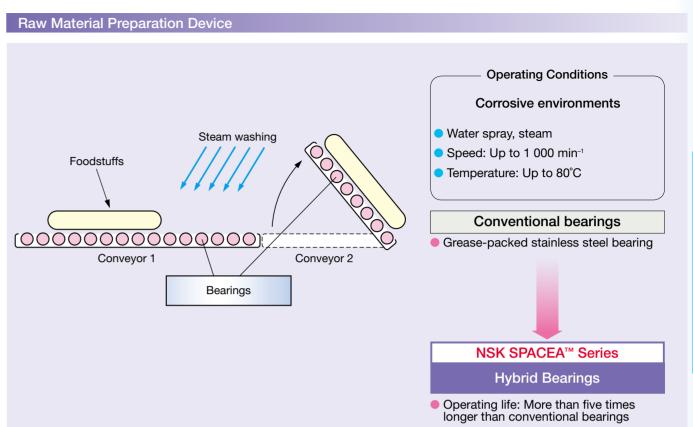


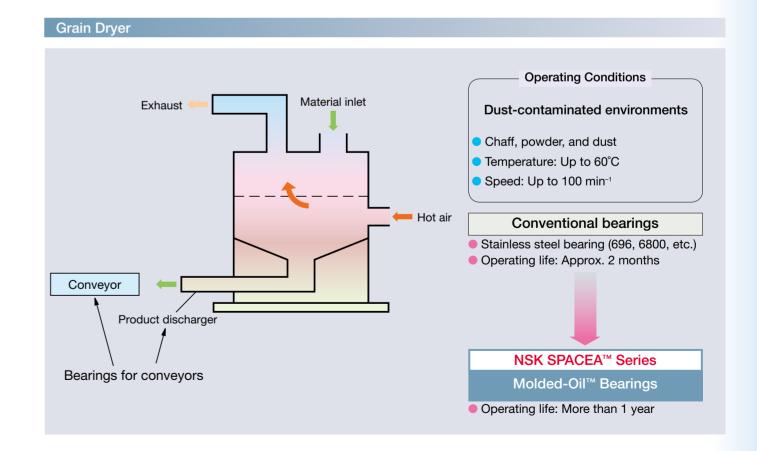



E Applications of SPACEA™ Series Bearings








E Applications of SPACEA™ Series Bearings

NSK proudly offers cutting-edge products developed with state-of-the-art technology

SPACEA™ Series—NSK Ball Screws and NSK Linear Guides for Special Environments—offers a wide array of products for special environments, including vacuum and clean, corrosive, sanitary, dust-contaminated, high-temperature, and non magnetic environments. NSK's state-of-the-art technology creates products that deliver high performance in a variety of severe conditions.

Optimal products for specific applications can be found in the SPACEA series ball screws and linear guides Selection Guide on pages B5–B6.

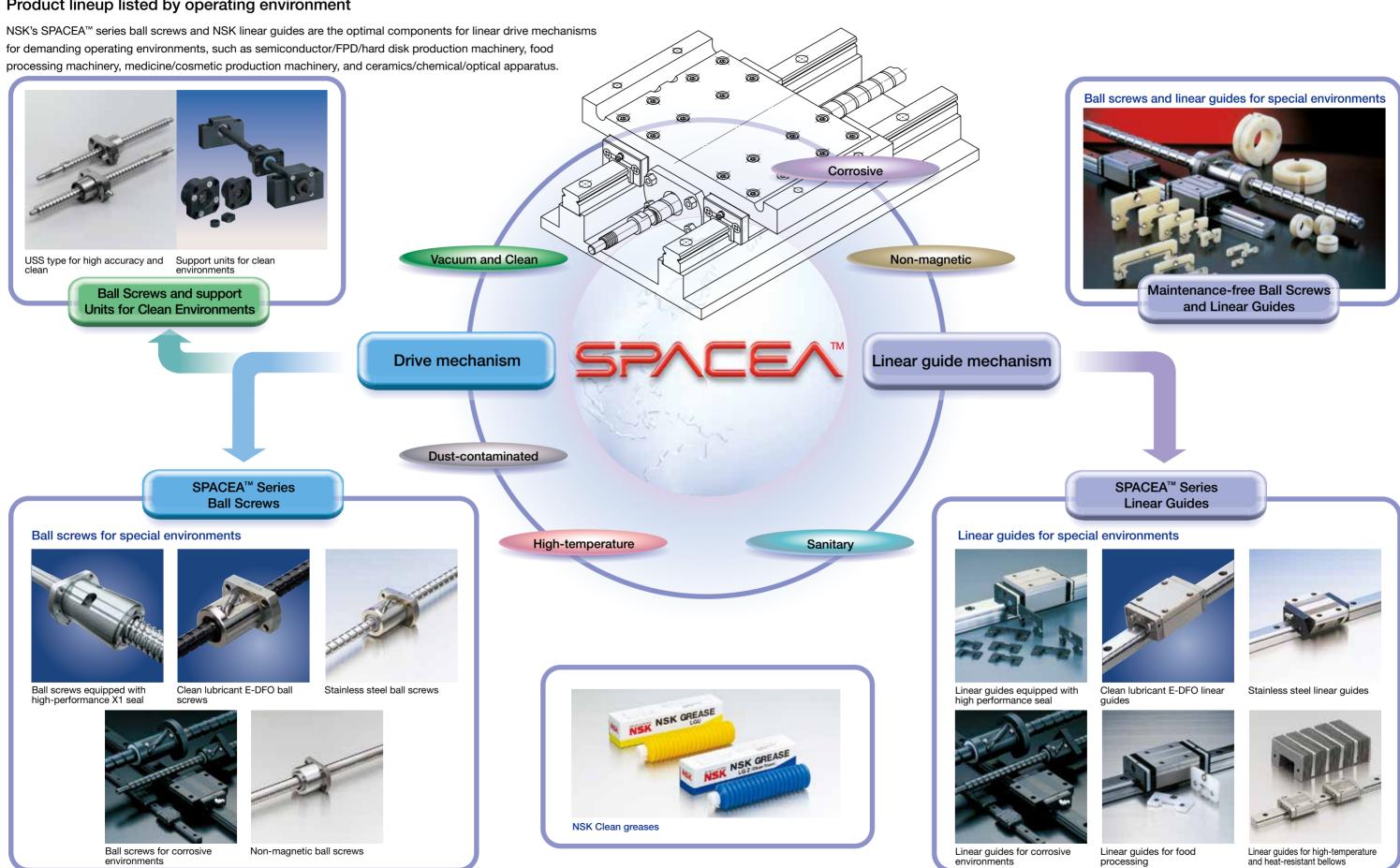

	SPACEA™ Series Ball Screws and NSK Linear Guide™	
A	Inventory	·B3-B4
B	Selection Guide	·B5–B6
C	Types and Specifications	· B7–B8
D	Dimensions and Availability	B9-B12
	1. Ball Screws	
	2. Clean Support Unit	
	3. NSK Linear Guide™	
E	Specifications, Operating Instructions, and Technical Data	13-B32
	1. Corrosion-resistant Ball Screws and NSK Linear Guide™ (Fluoride Low-temperature Chrome Plating) ······	313-B14
	2. LG2/LGU Clean Greases ····	315-B16
	3. NSK Clean Lubricant E-DFO	317-B18
	4. Clean Environments Standard Ball Screws USS	319-B20
	5. Support Units for Clean Environments	321-B22
	6. Lubrication Unit for "NSK K1™" ————————————————————————————————————	323-B26
	7. NSK High Performance Seals····	327-B30
	8. Ball Screws and NSK Linear Guide™ for High-temperature Environments ······ Environments ······	331-B32
E	Applications of SPACEA™ Series Ball Screws and NSK Linear Guide™	33-B34
	Semiconductor Manufacturing Equipment	
	2. LCD/Semiconductor Production Machinery	

Table of Contents of

Linear guides for corrosive

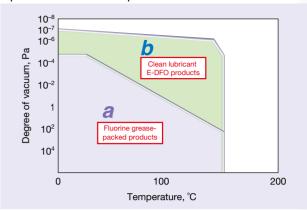
environments

Product lineup listed by operating environment

Ball screws for corrosive

environments

Select the most appropriate product with the following selection flow chart.

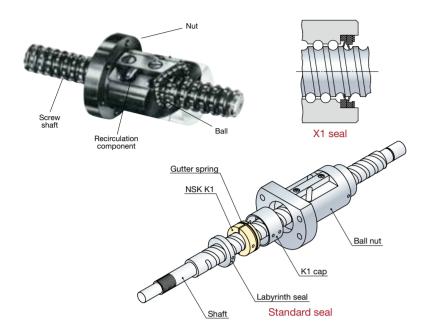

Select the group of products appropriate for your operating environment and application.

Find the product series that will meet your operating conditions.

3 Select the product most appropriate in terms of availability and price.

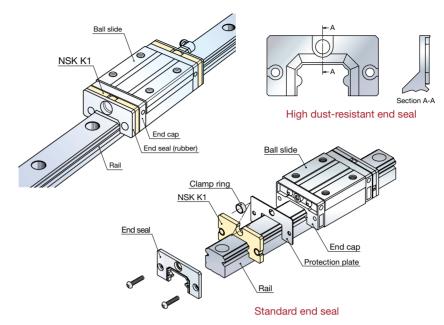
Follow the operating instructions that are provided.

 Scope of applications for fluorine grease-packed products and E-DFO products



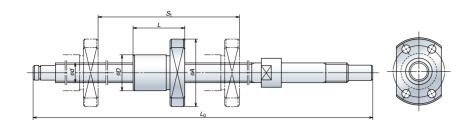
					② Operating conditions Degree of vacuum Temperature Classificate (I) Limiting rotational speed Limiting speed of linear guide (I)													Ī						
	Operatir	① ng environment	ronment Product name		Deg	ree of Pa			Т	emperature °C	е	Cle	eanliness	(1)	Limiting	g rotationa d⋅n value	al speed	Limiting s	peed of line m/min	ear guide	3 Price	Dimensions (availability)		Š
	Operatii	ig environment			Normal atmosphere	10-4≦	10⁻8≦		≤100	≤200	≤300	100- 1 000	≤100	≤10	≤50 000	≤100 000	≤150 000	≤100	≤200	≤300	companson	(availability)	instructions Technical data	a
	Clean	Normal atmosphere	LG2 clean grease-packed ball scre	ews and linear guides					≤70°C						≤70 00	10		≤100			Low		B15-B16, B19-B20,	
Vacuum	Olean	(room temperature)	LGU clean grease-packed ball scr	ews and linear guides					≤120°C						≥/0 00			≥100			High		B19-B20, B23-B25	Ball Scre
and clean	Vacuum	From normal atmosphere up to vacuum (room temperature)	Fluorine grease-packed ball screw	s and linear guides	See the	scope of	applications	s for	fluorine grease-pac	ked products (upp	per right) a	•			≤70 00	00		≤100			Low		B13-B14	SN/swe
	vacuum	From normal atmosphere up to vacuum (up to 150°C)	Clean lubricant E-DFO ball screws	and linear guides	See the	e scope c	of application	ons	for E-DFO pro	ducts (upper	right) b				≤70 00	00		≤100			High	Ball	B17-B18	K Line
	Non- magnetic	Non-magnetic (relative permeability 1.01 or less) (from normal atmosphere up to vacuum)	Non-magnetic stainless steel ball s guides	screws and linear		10⁻⁵Pa			≤15	O°C					≤70 00	00		≤100			-	(B9)	_	ar Guides
	\\/-t	Water vapor, high-humidity environments	Ball screws and linear guides for corrosive environments	(Standard grease)					≤80°C						<70.00			1100			Low		B13-B14,	
On which	Water	Water-immersed, water-spray	Ball screws and linear guides for corrosive environments	(Standard seal)					≥80 €						≤70 00			≤100			High	Support units (B10)	B23-B24	Sele
Corrosive	,	Veak acid, weak alkali	Corrosion-resistant coated ball screws and linear guides	(Fluorine grease)					≤80°C						<70.00			4100			Low		B13-B14	ection G
	S	trong acid, strong alkali	Stainless steel ball screws and linear guides	(Corrosion-resistant seal)					≤15	0°C					≤70 00			≤100			High	Linear guides (B11-B12)		uide
Sanitary	Food	d processing environments	Ball screws and linear guides for fo	ood processing					≤80°C						≤70 00	00		≤100			-		B25-B26	
Dust- contaminated		Dust or wood chips	Ball screws equipped with high-pe Linear guides equipped with high	erformance X1 seal performance seal					≤80°C						≤70 00	00		≤100			Low High		B13-B14, B23-B24, B27-B30	
High- temperature	Norma	al atmosphere (up to 150°C)	Ball screws and linear guides for henvironments	igh-temperature					≤15	0°C					≤70 00	00		≤100			ı		B31-B32	
Non- magnetic	From nor	mal atmosphere up to vacuum	Non-magnetic stainless steel ball s guides	screws and linear		10-⁵Pa			≤15	0°C					≤70 00	00		≤100			-		_	

⁽¹⁾ Cleanliness may vary depending on surrounding structures and other factors.


⁽²⁾ $d \cdot n = \text{Shaft diameter of ball screws, mm} \times \text{rotational speed (min}^{-1})$

SPACEA™ Series Ball Screws

SPACEA™ Series NSK Linear Guide™



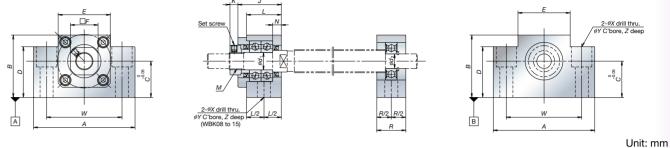
							Component specification	ns			· Specifications						
	Operat	ing environment	Product name	Ball screw specifications	Shaft, nut	- Ball	Recirculation components	Seal	Corrosion-resistant	Lubricant	Operating instructions						
				Linear guide specifications	Rail, ball slides	Dall	End cap	Seal	coating	Lubricant	· Technical data						
	Clean	Normal atmosphere		acked ball screws and	Standard material	Standard material	Standard material	Standard	Fluoride low-	LG2 clean grease, NSK K1	B15-B16, B19-B20,						
	Olean	(room temperature)	linear guides					seal	temperature chrome plating	LGU clean grease, NSK K1	B23-B24						
Vacuum and		From normal atmosphere up to vacuum (room temperature)	Fluorine grease- linear guides	-packed ball screws and	Martensite stainless steel	Martensite stainless steel	Austenite stainless steel		ornomo pianing	Fluorine grease	B13-B14						
clean	Vacuum	From normal atmosphere up to vacuum (up to 150°C)	Clean lubricant linear guides	E-DFO ball screws and				_	-	E-DFO (+ DLC) or Molybdenum disulfide	B17-B18						
	Non- magnetic	From normal atmosphere up to vacuum	Non-magnetic s linear guides	stainless steel ball screws and	Special austenite stainless steel	Ceramics	Austenite stainless steel	Standard seal	-	Standard grease, Fluorine grease	-						
	Water	Water vapor, high-humidity environments	Corrosion-resist	tant coated ball screws and	Standard material	Standard material	Standard material	Standard	Fluoride low- temperature	Standard grease + NSK K1	B13-B14,						
Corrosive	Water	Water-immersed, water-spray	Stainless steel b	oall screws and linear guides	Martensite stainless steel	Martensite stainless steel		seal	chrome plating	Standard grease + NSK KT	B23-B24						
Corrosive		Weak acid, weak alkali	Corrosion-resist	tant coated ball screws and	Standard material	Standard material	Austenite stainless steel	Corrosion-	Fluoride low- temperature	Fluorine grease	B13-B14						
	5	Strong acid, strong alkali	Stainless steel b	oall screws and linear guides	Martensite stainless steel	Martensite stainless steel		resistant seal	chrome plating	Fluorine grease	613-614						
Sanitary	Foo	d processing environments	Ball screws and linear guides for food processing								Martensite stainless steel	Martensite stainless steel	Austenite stainless steel	Standard seal	-	Grease for food processing applications, NSK K1 for food processin applications and medical devices	g B25–B26
Dust-		Dust or wood ships	Ball screws equipped with high-performance X1 seal		Standard material	Standard material	Standard material	X1 seal	Fluoride low-	Standard grease	B13–B14, B27						
contaminated		Dust or wood chips	Linear guides equipped with high performance seal		Standard material	Standard material	Standard material	High dust- resistant seal	temperature chrome plating	Standard grease + NSK K1	B13-B14, B23-B24, B28-B30						
High- temperature	Norm	nal atmosphere (up to 150°C)	Ball screws and high-temperature	I linear guides for re environments	Martensite stainless steel	Martensite stainless steel	Austenite stainless steel	(High dust- resistant seal)	-	Heat-resistant grease, Fluorine grease	B31-B32						
Non- magnetic	From no	ormal atmosphere up to vacuum	Non-magnetic stainless stool hall serows and		Non-magnetic stainless steel ball screws and		Non-magnetic stainless steel ball screws and		Special austenite stainless steel	Ceramics	Austenite stainless steel	Standard seal	-	Standard grease, Fluorine grease	_		

Note: Under radioactive operating conditions, resins used in standard products may cause distortion of the products, and resins used in lubricants may deteriorate;

Series Ball Screws

1. Dimensions of Ball Screws

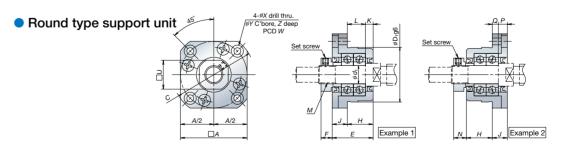
Dimensions and Availability of SPACEA™


					Dimension	ns (mm)						Suitability	for special e	nvironments (availahilitv)	
Series	Shaft diameter	Lead	Effective turns of balls	Number of start	Nut outer diameter	Flange outer diameter	Nut length	Maximum shaft length	Stroke	Dynamic load rating	01	-		High-	Dust-	.
ן כט	d				D	A	L	L ₀ max	St	(N)	Clean	Vacuum	Corrosive	temperature	contaminated	Sanitary
	6	1	1×3	1	12	24	21	174	100	470						
		1	1×3	1	14	27	21	248	150	545	Ŏ		l ŏ			
	8	2	1×3	1	16	29	28	248	150	1 080	\sim		$\vdash {\sim}$			
		2	1×3	1	18	35	29	308	200	1 210	\sim					
	10	4	2.5×3	1	26	46	34	430	300	2 250	\sim		$\vdash \times \vdash$			
		2	1×3	1	20	37	29	380	250	1 360	\sim		$\vdash $			$\overline{}$
ΚA	10	5	2.5×1	1	30	50	40	580	450	3 070	\sim		$\vdash \times \vdash$			\sim
	12		2.5×1	1	30	50	50	580	450	3 070	\sim		$\vdash \times \vdash$			\sim
		10		_	34	57					\sim		1 ×			\sim
	15	10	2.5×1	1			51	1 161		5 780	\sim		$\vdash \times \vdash$			$\overline{}$
	4.0	20	1.7×1	1	34	55	45	1 161	1 000	4 150	\sim		$\vdash \times \vdash$			$ \otimes$
	16	2	1×4	1	25	44	40	461	300	2 870	\sim		12			-2
	20	20	1.5×1	1	46	74	63	1 208	1 000	5 760	<u> </u>					0
Ũ	10	_	l <u></u> .		23	43	29	521	433	2 930	<u> </u>					
S	12	5	2.7×1	1	24	44	30	621	530	3 200	<u> </u>					
S	15				28	51	30	761	653	5 460	\bigcirc					
	10	2	1×3	1	22	39	29	308		1 210	Q	<u>Q</u>	L Q	<u>Q</u>		<u>Q</u>
1	10	4	2.5×1	1	26	46	34	430		2 250	0					\bigcirc
1		2	1×3	1	24	41	29	380		1 360	0					
1	12	5	2.5×1	1	30	50	40	580		3 070						
1		10	2.5×1	1	30	50	50	580		3 070						\circ
1	4.5	10	2.5×1	1	34	57	51	1 161		5 780	0					0
	15	20	1.7×1	1	34	55	45	1 161		4 150	0	0		0		0
	16	2	1×4	1	30	49	40	461		2 870	0					0
	20	20	1.5×1	1	46	74	63	1 208		5 760	Ŏ	Ŏ	Ŏ	Ŏ		Ô
		5	2.5×2	1	50	73	55	1 800		13 600	Ŏ	Ŏ	Ŏ	Ŏ		Ŏ
	25	25	1.5×1	1	44	71	90	1 800		8 280		Ŏ	Ŏ	Ŏ		$\overline{}$
		25	1.5×1	1	47	74	119	1 800		8 280	Ŏ	Ŏ	Ŏ	Ŏ		Ŏ
		5	2.5×2	1	58	85	106	2 400		15 100	Ŏ	Ŏ	ĬŎ	Ŏ		Ŏ
		10	2.5×2	1	74	108	125	2 400		37 900	Ŏ	Ŏ	ĬŎ	Ŏ		Ŏ
		20	2.5×1	1	78	105	107	2 400		14 700	Ŏ	Ŏ	l ŏ	Ŏ		
1	32	25	2.5×1	1	78	105	120	2 400		14 700	$\overline{}$	$\vdash \check{\land}$	l ŏ	l ŏ		
- I		32	1.5×1	1	51	85	109	2 400		9 450	\sim	$\vdash \overset{\sim}{\sim}$		\vdash		
au		32	1.7×2	2	56	86	109	2 800		25 000	\sim					\sim
Ĕ.		25	2.5×1	1	100	133	136	3 000		23 400	\sim					
8			1.5×2	1	100	133	122	3 000		24 600	\sim	$\vdash \times \vdash$	$\vdash \times \vdash$	$\vdash \times \vdash$		
o l		32		_							\sim	$\vdash \times \vdash$	$\vdash \times \vdash$	\sim		
5	40	40	1.5×1	1	64	106	133	3 000		15 100	\sim					$\overline{}$
∺ 1	40	10	2.5×2	1	82	124	173	2 900		52 000	$ \stackrel{\bigcirc}{\sim}$				$ \times$ $+$	$ \stackrel{\bigcirc}{\sim}$
퓱		12	2.5×2	1	86	128	197	2 900		61 000	\mathcal{L}				\mathbb{R}^{2}	$ \bigcirc$
Production on demand	-	16	3.7×1	1	86	128	172	2 900		57 100	\mathcal{L}					$ \bigcirc$
Д		20	2.7×2	2	86	128	164	2 900		66 900	0					\bigcirc
1	_	8	2.5×4	1	82	120	162	3 300		55 400	<u> </u>	0		0		<u> </u>
		10	2.5×2	1	88	132	117	3 300		44 300	<u> </u>			0		\bigcirc
	45	8	2.5×2	1	82	124	146	2 900		37 300	0					<u> </u>
		16	3.7×1	1	92	134	173	2 900		59 600	0					\bigcirc
		20	2.7×2	2	92	134	164	2 900		69 100	0					\circ
		8	2.5×4	1	90	129	149	3 500		57 500	0					0
		10	2.5×4	1	93	135	163	3 500		85 700	0					0
		25	2.5×1	1	120	156	140	3 300		34 900	0			0		
		32	2.5×1	1	120	156	158	3 300		34 900	Ô	Ŏ	Ŏ	Ŏ		
		40	1.5×1	1	120	156	140	3 300		36 700	Ŏ	Ŏ	Ŏ	Ŏ		
	50	50	1.5×1	1	80	126	161	3 500		22 500	Ŏ	Ŏ	ΙŎ	Ŏ		
		50	1.5×2	2	120	156	158	3 500		36 700	Ŏ	Ŏ	ĬŎ	Ŏ		
		10	2.5×2	1	93	135	174	2 900		57 700	Ŏ	\vdash				
	}	12	2.5×2	1	100	146	200	2 900		77 600	\preceq				$\vdash \stackrel{\sim}{\sim} \vdash$	$\overline{}$
		12					173	2 900			$\vdash \times \vdash$		_		$\vdash \times \vdash$	\sim
	l t	16	3.7×1	1	98	140				61 800	()	1	1		[() [

Ocontact NSK for the details of availability

Note: The dynamic load ratings listed are those of martensite stainless steel screws, with the internal clearance as a reference. The dynamic load ratings may vary depending on materials or internal specifications.

2. Dimensions of Clean Support Unit


Square type support unit

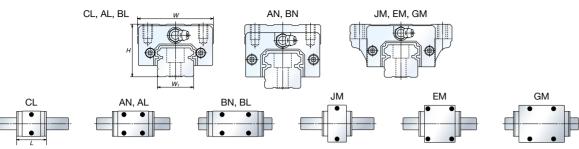
		Fixed sup	port side u	nit (square	type)				
Reference No. (for use in clean environments)	Locknut tightening torque (reference) [N·cm]	Set screw tightening torque (reference) [N·cm]	d ₁	F	J	К	L	N	М
WBK08-01C	230	69 (M3)	8	14	23	7	_	4	M8 × 1
WBK10-01C	280	147 (M4)	10	17	30	5.5	24	6	M10×1
WBK12-01C	630	147 (M4)	12	19	30	5.5	24	6	M12×1
WBK15-01C	790	147 (M4)	15	22	31	12	25	5	M15×1

											Offic. Hilli
Simple suppor	t side unit				Con	nmon dimer	nsions with	square type)		
Reference No. (for use in clean environments)	d ₂	R	А	В	С	D	Ε	W	Х	Y	Z
WBK08S-01C	6	15	52	32	17	26	25	38	6.6	11	12
WBK10S-01C	8	20	70	43	25	35	36	52	9	14	11
WBK12S-01C	10	20	70	43	25	35	36	52	9	14	11
WBK15S-01C	15	20	80	50	30	40	41	60	11 9	17 14	15 11

Note: For dimensions of X, Y, and Z for WBK15S-01C, the upper number indicates dimensions of fixed support side unit, and the lower number shows dimensions of simple support side unit.

Reference No. (for use in clean							ı	ixed s	suppor	t side	unit (r	ound t	ype)						
environments)	d ₁	Α	С	U	W	X	Y	Z	D ₁	Ε	F	Н	J	K	L	N	P	Q	М
WBK08-11C	8	35	43	14	35	3.4	6.5	4	28	23	7	14	9	4	10	8	5	4	M8 × 1
WBK10-11C	10	42	52	17	42	4.5	8	4	34	27	7.5	17	10	5	12	8.5	6	4	M10×1
WBK12-11C	12	44	54	19	44	4.5	8	4	36	27	7.5	17	10	5	12	8.5	6	4	M12×1
WBK15-11C	15	52	63	22	50	5.5	9.5	6	40	32	12	17	15	6	11	14	8	7	M15×1

Note: Refer to the dimensions of square type support unit for tightening torque of locknuts and setscrews.


Unit: mm

Dimensions and Availability of SPACEA™ Series NSK Linear Guide™

3. Dimensions of Linear Guides

S				Dim	nensions (mm)				Suitability f	or special er	nvironments	(availability)	
Series	Model No.	Height	Overall width		length (L)	Rail width	Dynamic load rating (N)	Clean	Vacuum	Corrosive	High- temperature	Sanitary	Dust- contaminated
	NII I I I I I I I I I I I I I I I I I I			Standard	With NSK K1	·					tomporatoro		- Contaminator
	NH15AN NH15BN	28 28	34 34	55 74	65.6 84.6	15 15	14 200 18 100	Ö		0		Ö	
	NH15EM	24	47	55	65.6	15	14 200	ŏ		ŏ		ŏ	
	NH15GM	24	47	74	84.6	15	18 100	0		0		0	
	NH20AN	30	44	69.8	80.4	20	23 700	8	0	0	0	0	
	NH20BN NH20EM	30 30	63	91.8 69.8	102.4 80.4	20 20	30 000 23 700	ŏ	l ŏ	Ŏ	Ŏ	Ö	
	NH20GM	30	63	91.8	102.4	20	30 000	ŏ	Ŏ	ŏ	ŏ	ŏ	
	NH25AN	40	48	79	90.6	23	33 500	0	0	0	0	0	
	NH25BN NH25AL	40 36	48 48	107 79	118.6 90.6	23 23	45 500 33 500	0		0	0	0	
	NH25BL	36	48	107	118.6	23	45 500	0	<u> </u>	Ö	0	Ö	
	NH25EM	36	70	79	90.6	23	33 500	Ŏ	Ŏ	Ŏ	Ŏ	Ŏ	
	NH25GM	36	70	107	118.6	23	45 500	0	0	0	0	0	
	NH30AN NH30BN	45 45	60 60	85.6 124.6	97.6 136.6	28 28	41 000 61 000	0		0	0	0	
	NH30AL	42	60	85.6	97.6	28	41 000	ŏ	l ö	Ŏ	Ŏ	Ö	
	NH30BL	42	60	124.6	136.6	28	61 000	ŏ	ŏ	ŏ	ŏ	ŏ	
	NH30EM	42	90	98.6	110.6	28	47 000	Q	0	0	0	0	
	NH30GM	42	90	124.6	136.6	28	61 000	0		2	0	0	
NH	NH35AN NH35BN	55 55	70 70	109 143	122 156	34 34	62 500 81 000	0		0	0	0	
	NH35AL	48	70	109	122	34	62 500	Ö		Ö	Ö	Ö	
	NH35BL	48	70	143	156	34	81 000	Ŏ		Ŏ	Ŏ	Ŏ	
	NH35EM	48	100	109	122	34	62 500	0		0	0	0	
	NH35GM	48	100	143	156	34	81 000	0		0	0	0	
	NH45AN NH45BN	70 70	86 86	139 171	154 186	45 45	107 000 131 000	0		0	0		
	NH45AL	60	86	139	154	45	107 000	ŏ		ŏ	ŏ		
	NH45BL	60	86	171	186	45	131 000	Ō		Ō	Ō		
	NH45EM	60	120	139	154	45	107 000			0	0		
	NH45GM NH55AN	60 80	120 100	171 163	186 178	45 53	131 000 158 000	0		0	0		
	NH55BN	80	100	201	216	53	193 000	ŏ		ŏ			
	NH55AL	70	100	163	178	53	158 000	Ŏ		Ŏ			
	NH55BL	70	100	201	216	53	193 000	0		0			
	NH55EM NH55GM	70 70	140 140	163 201	178 216	53 53	158 000 193 000	0		0			
	NH65AN	90	126	193	211	63	239 000	ŏ		Ŏ			
	NH65BN	90	126	253	271	63	310 000	Ŏ		Ŏ			
	NH65EM	90	170	193	211	63	239 000	0		0			
	NH65GM VH15AN	90	170 34	253	271	63 15	310 000	0		0			
	VH15BN	28	34		9.6	15	14 200 18 100	0		0			X
	VH15EM	24	47		0.6	15	14 200	ŏ		ŏ			Ŏ
	VH15GM	24	47		9.6	15	18 100	0		0			0
	VH20AN	30	44		7.4	20	23 700	<u> </u>		0			0
	VH20BN VH20EM	30 30	63 63		9.4 7.4	20 20	30 000 23 700	0		0			8
	VH20GM	30	63		9.4	20	30 000	ŏ		Ŏ			Ŏ
	VH25AN	40	48	9		23	33 500	Ŏ		Ŏ			Ŏ
	VH25BN	40	48	12:		23	45 500	0		0			Q
	VH25AL VH25BL	36 36	48	9'		23 23	33 500 45 500	0		0			
	VH25EM	36	70	9		23	33 500	Ö		Ö			Ŏ
	VH25GM	36	70	12		23	45 500	ŏ		ŏ			ŏ
	VH30AN	45	60	10-	4.4	28	41 000	Q		0			0
	VH30BN	45	60		3.4	28	61 000	<u> </u>		1 0			<u> </u>
VH	VH30AL VH30BL	42 42	60		4.4 3.4	28 28	41 000 61 000	0		0			0
VП	VH30EM	42	90		7.4	28	47 000	ŏ		0			l ö
	VH30GM	42	90		3.4	28	61 000	ŏ		ŏ			Ŏ
	VH35AN	55	70		8.8	34	62 500	0		0			0
	VH35BN	55	70		2.8	34	81 000	0		0			0
	VH35AL VH35BL	48 48	70 70		8.8 2.8	34 34	62 500 81 000	0		0			
	VH35EM	48	100		8.8	34	62 500	ŏ		ŏ			1 8
	VH35GM	48	100	16	2.8	34	81 000	Ō		Ŏ			Ŏ
	VH45AN	70	86		1.4	45	107 000	0		0			0
	VH45BN VH45AL	70	86		3.4	45 45	131 000	0		0			1 0
	VH45AL VH45BL	60 60	86 86		1.4 3.4	45 45	107 000 131 000	0		0			
	VH45EM	60	120		1.4	45	107 000	ŏ		Ö			Ĭŏ
	VH45GM	60	120	19:	3.4	45	131 000	Ō		Ŏ			Ŏ
	VH55AN VH55BN	80 80	100 100		5.4 3.4	53	158 000	0		0			0
						53	193 000	0					

LW Series	PU Series	LU Series	PE Series	LE Series
EL	TR, AR, AL, TL	UR, BL, UL	CL, SL AR,	TR, AL, TL UR, BR, UL, BL

ý			Dimensions (mm)							Suitability for special environments (availability)				
Series	Model No.	Tioight Of		Overall width Ball slide length (L)				Clean	Vacuum	Corrosive	High- temperature Sanitary	Sanitary	Dust-	
0)		H	W	Standard	With NSK K1	W_1	(N)				temperature	,	contaminate	
	VH55BL	70	100		3.4	53	193 000	0		0			0	
VΗ	VH55EM	70	140		5.4	53	158 000	<u> </u>		0			0	
	VH55GM NS15CL	70	140 34	40.4	50	53 15	193 000 7 250	0					0	
	NS15AL	24	34	56.8	66.4	15	11 200	<u> </u>			<u> </u>	Ö		
	NS15JM	24	52	40.4	50	15	7 250	Ŏ	Ŏ	Ŏ	Ŏ	Ŏ		
	NS15EM	24	52	56.8	66.4	15	11 200	0	0	0	0	0		
	NS20CL	28	42	47.2	57.8	20	10 600	<u> </u>		0	0	<u> </u>		
	NS20AL NS20JM	28 28	42 59	65.2 47.2	75.8 57.8	20	15 600 10 600	0	2	1 8	0	0		
	NS20EM	28	59	65.2	75.8	20	15 600	ŏ	 	<u> </u>	 ~	ŏ		
	NS25CL	33	48	59.6	70.2	23	17 700	Ŏ	Ŏ	Ŏ	Ŏ	Ŏ		
NS	NS25AL	33	48	81.6	92.2	23	26 100	0	0	0	0	0		
VO	NS25JM	33	73	59.6	70.2	23	17 700	<u> </u>	0		0	<u> </u>		
	NS25EM	33 42	73 60	81.6 67.4	92.2 79.4	23 28	26 100 24 700	0			0	0		
	NS30CL NS30AL	42	60	96.4	108.4	28	38 000	Ö		l ŏ	*	<u> </u>		
	NS30JM	42	90	67.4	79.4	28	24 700	ŏ	Ŏ	Ŏ	Ŏ*	ŏ		
	NS30EM	42	90	96.4	108.4	28	38 000	Ŏ	Ŏ	Ŏ	Ŏ*	Ŏ		
	NS35CL	48	70	77	90	34	34 500	0		0		0		
	NS35AL	48	70	108 77	121 90	34	52 500	0				0	-	
	NS35JM NS35EM	48 48	100	108	121	34 34	34 500 52 500	0		H &		8	+	
	LW17EL	17	60	51.4	61.6	33	5 600	Ö		Ö	0*	Ö		
	LW21EL	21	68	58.8	71.4	37	6 450	Ŏ		Ŏ	Ö*	Ŏ		
_W	LW27EL	27	80	74	86.6	42	12 800	Q		0	0	Q		
	LW35EL	35	120	108	123	69	33 000	0		0		0		
	LW50EL PU05TR	50	162 12	140.6 19.4	155.6 24.4	90 5	61 500 520	0						
	PU07AR	8	17	23.4	29.4	7	1 090	Ŏ		<u> </u>				
	PU09TR	10	20	30	36.4	9	1 490	Ŏ		Ŏ		0		
PU	PU09UR	10	20	41	47.4	9	2 100	0		0		0		
. 0	PU12TR	13	27	35	42	12	2 830	<u> </u>				<u> </u>		
	PU12UR PU15AL	13 16	27 32	48.7 43	55.7 51.2	12 15	4 000 5 550	0				0		
	PU15BL	16	32	61	69.2	15	8 100	ŏ		1 8		ŏ		
	LU05TL	6	12	18	24.4	5	545	Ŏ		Ŏ				
	LU07AL	8	17	20.4	29.4	7	1 090	0		0				
	LU09AL,TL	10	20	26.8	34.2	9	1 760	0	0		0	0		
	LU09AR,TR LU09BL,UL	10	20	30 41	36.4 47.4	9	1 490 2 600	0	0	0	0	0		
LU	LU12AL,TL	13	27	34	41	12	2 830	Ŏ	Ŏ	1 ŏ	Ö	Ŏ		
	LU12AR,TR	13	27	35.2	42.2	12	2 830	Ŏ		Ŏ		Ŏ		
	LU12BL,UL	13	27	47.5	54.5	12	4 000	0	0	0	0	0		
	LU15AL	16	32	43.6	51.8	15	5 550	<u> </u>			0*	<u> </u>		
	LU15BL PE05AR	16 6.5	32 17	61 24.1	69.2 28.9	15 10	8 100 690	0	0		0*	0		
	PE07TR	9	25	31.1	37.1	14	1 580	0		Ŏ				
	PE09TR	12	30	39.8	46.8	18	3 000	Ö		Ŏ		0		
PE	PE09UR	12	30	51.2	58.2	18	4 000	Ŏ		Ŏ		Ŏ		
_	PE12AR	14	40	45	53	24	4 350	0		0		0		
	PE12BR PE15AR	14 16	40 60	60 56.6	68 66.2	24 42	5 800 7 600	0				0		
	PE15AR PE15BR	16	60	76	85.6	42	10 300	8		H ~		<u> </u>	+	
	LE05CL	6.5	17	20	-	10	595	ŏ		Ŏ				
	LE05AL	6.5	17	24	-	10	725	Ō		Ŏ				
	LE07SL	9	25	22.4	28.4	14	980	0	0	0	*			
	LE07TL	9	25	31	37	14	1 580	0		1 2	*		1	
	LE07UL LE09CL,SL	9	25 30	42 26.4	48 33.4	14 18	2 180 1 860	0			*	0		
	LE09CL,SL	12	30	39	46	18	3 000	ŏ	 ŏ	ŏ	*	ŏ		
	LE09AR,TR	12	30	39.8	46.8	18	3 000	Ō		Ŏ		Ō		
_E	LE09BL,UL	12	30	50.4	57.4	18	4 000	Ŏ	0	Ö	0*	Ŏ		
	LE12CL	14	40	30.5	38.5	24	2 700	2	2	1 2	2		1	
	LE12AL LE12AR	14 14	40	44 45	52 53	24 24	4 350 4 350	0	0		0	0	+	
	LE12BL	14	40	45 59	67	24	5 800	0		l ŏ		0	+	
	LE15CL	16	60	41.4	51	42	5 000	Ö	Ŏ	Ŏ	Ŏ	Ö		
	LE15AL	16	60	55	64.6	42	7 600	Ŏ	Ŏ	Ŏ	Ŏ	Ŏ		
	LE15AR	16	60	56.6	66.2	42	7 600	0		0		0		
	LE15BL	16	60	74.4	84	42 8	10 300 1 240	0	0	0	0	0		
LH	LH08AN LH10AN	11	16 20	24 31	31 40	10	2 250	0		0				
	LH12AN	20	27	45	54	12	5 650	Ö	0	ŏ	0*	0		

^{*}Seals are not applicable in high-temperature environments. Contact NSK for details. \bigcirc : Made-to-order (Blank: Consult NSK)

1. Corrosion-resistant Ball Screws and NSK Linear Guide™ (Fluoride Low-temperature Chrome Plating)

Ball screws and NSK linear guides are used in various applications and environments, such as industrial machinery, semiconductor and LCD manufacturing equipment, and aerospace equipment. A major concern in these settings is preventing rust which may occur during wet processing in manufacturing equipment utilizing chemicals, particularly machines that use water, such as washing machines and machines used in various manufacturing stages of semiconductors and LCDs.

NSK applies, with successful results, a fluororesin coating as a surface treatment on electrolytic anti-rust black film (fluoride low-temperature chrome plating) as the optimal rust prevention coating for linear guides and ball screws in such machines and equipment.

Fluoride Low-temperature Chrome Plating Processing

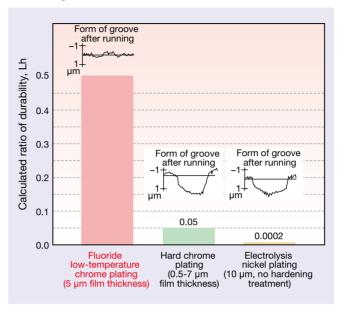
Electrolytic rust-resistant black plating + fluororesin coating

- Black plating: treated to form a stable thin film (1-2 µm), which is a form of black chrome galvanization
- Fluororesin coating is applied to this film to enhance corrosion resistance
- enables stable, accurate control

Rust condition A: No rust B: No rust, but slight discoloration C: Spot rust

- The thin-film and high corrosion-resistance properties reduce factors that might adversely affect the accuracy of parts
- The low-temperature treatment with no hydrogen brittleness Outstanding durability on rolling surfaces, compared with
 - More economical than other surface-treated or stainless steel products

Note: Avoid using organic solvents, which may degrade the treatment's rust prevention properties.


Test results of corrosion resistance to humidity

Charac	Sample	Fluoride low-temperature chrome plating	Hard chrome plating	Electrolysis nickel plating	SUS440C	Standard product
	Upper face	(Grinding) B	(Grinding) B (Grinding) B		(Grinding) C	(Grinding) D
lition	Side face	(Grinding) A	(Grinding) A	(Grinding) A	(Grinding) C	(Grinding) E
condition	Bottom face	(Grinding) A	(Grinding) A	(Grinding) A	(Grinding) C	(Grinding) E
Rust	End face	(Cutting) A	(Cutting) C	(Cutting) A	(Cutting) C	(Cutting) E
	Chamfer, Grinding off	(Drawing) A	(Drawing) D	(Drawing) A	(Drawing) C	(Drawing) E
Rust prevention	st conditions Testing machine: Dabaiespeck high- temperature and high- humidity vessel Temperature: 70°C Relative humidity: 95% Time: 96 hours		O	0	C	0
	To/From the setting condition of temperature and humidity Rise time: 5 hours Fall time: 2 hours					
	Film thickness	5 μm	0.5–7 μm	10 μm	_	_

D: Slightly rusted

E: Completely rusted

 Surface treatment durability test results for linear guides

Comprehensive evaluation

	Available length	Rust- resistant capability	Quality stability	Durability	Cost
Fluoride low- temperature chrome plating	◎ (4 m)	0	0	0	Low
Hard chrome plating	△ (2 m)	0	×		High
Electrolysis nickel plating	(4 m)	0	Δ	×	High
SUS440C	○ (3.5 m)	0	0	0	High
②: Superior△: No problem for use∴ Not as good∴: Problem—restricted use					

Test results of corrosion resistance to chemical exposure

Test conditions - Base material of rail: equivalent to SUS440C Concentration of chemical: 1 normal (1N)

Fluoride low-temperature chrome plating	Soaking/Vapor	Hard chrome plating	No surface treatment
0	24-hour soaking Nitric acid	0	2
	24-hour soaking Hydrofluoric acid	0	0
	72-hour vapor Hydrochloric cleansing liquid HCI: H ₂ O ₂ : H ₂ O = 1:1:8		
0	Hydrochloric liquid (soaking)	0	A
0	Sulfuric acid (soaking)	0	×
0	Ammonia or sodium hydroxide	0	Δ

○: No damage △: Partial damage to surface

▲: Damage to entire surface

×: Corrosion exists

2. LG2/LGU Clean Greases

NSK LG2/LGU clean greases are recommended for products used in clean rooms, including products with low-dust specifications: NSK's linear guides, ball screws, monocarriers, XY modules, megatorque motors, and XY tables. LG2/LGU clean greases exhibit low-dust and corrosion-resistant properties among other outstanding characteristics, in contrast to fluorine greases conventionally used in clean rooms. They are highly regarded among manufacturers of semiconductor production equipment.

Features of NSK Clean Greases

- Low-dust characteristics that outperform fluorine greases
- Low torque—less than 20% of that of fluorine greases
- Over ten times more durable than fluorine greases
- Superior rust prevention compared to fluorine greases

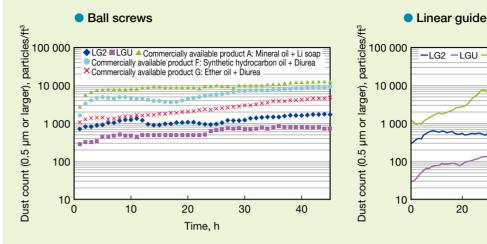
Note: LG2/LGU clean greases are for use in normal atmosphere only. Fluorine greases or other NSK greases are recommended for vacuum applications.

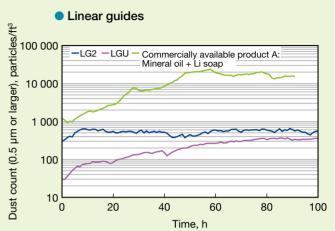
Properties of grease

Operating environment	For use in norma	From normal atmosphere up to vacuum		
Product	LG2	LGU	Commercially available fluorine grease K	
Base oil	Mineral oil and synthetic hydrocarbon oil	Synthetic hydrocarbon oil	Fluorine oil	
Thickener	Lithium soap	Diurea	PTFE	
Kinematic viscosity (mm²/s, 40°C)	32	95.8	270	
Consistency	199	201	280 ± 15	
Maximum operating temperature, °C	up to 70	up to 120	up to 200	

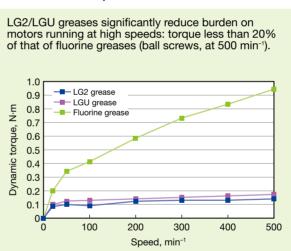
- LG2 and LGU are NSK-developed greases.
- LGU grease is free of metallic elements.

Comprehensive evaluation

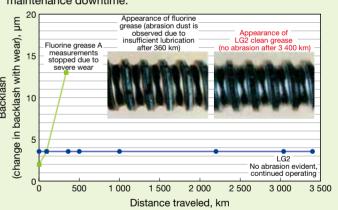

Characteristics	LG2/LGU	Fluorine grease	Ordinary grease	
Low partide emission	0	O/A	△/×	
Torque	0	×	O/A	
Durability	0	Δ/X	0	
Rust prevention	0	Δ/×	0	


: Excellent X: Not recommended △: Poor

Properties of grease


Clean

LG2/LGU greases offer stable low-dust characteristics over a longer period of time compared to fluorine greases.



Stable low-torque characteristics

Long life

LG2/LGU greases last over 10 times longer than fluorine greases, equivalent with ordinary greases, resulting in less maintenance downtime.

Superior rust prevention

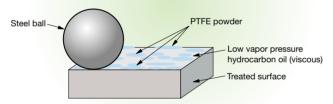
NSK clean greases have high rust-prevention capability providing high reliability.

Rusting

3. NSK Clean Lubricant E-DFO

NSK clean lubricant E-DFO forms a hydrocarbon oil film directly on raceway surfaces of ball screws, linear guides and balls, resulting in lower particle emissions and outgassing, and a longer life than that of existing fluororesin coating or solid lubrication in vacuum environments.

E-DFO treatment technology by NSK is the first in the world to provide special lubrication coating to rolling surfaces (patent pending).


Features of Clean Lubricant E-DFO

E-DFO lubricant coating: Thin lubricant film technology for low vapor pressure oil and absorbed substance holds its lubrication coating well.

- Low particle emissions and superior outgassing properties compared to conventional fluororesin-coated products and solid lubricant products
- Far more durable than fluororesin-coated products

 Low vapor pressure hydrocarbon oil coating that exhibits the properties of liquids and solids

• Retention intensity of lubricant coating increases due to the flake-shaped PTFE powder that has a large absorbed surface area of lubricant and retains a large quantity of lubricant coating

Notes:

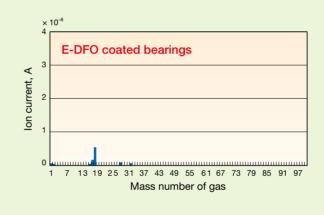
E-DFO coating: E-DFO coating is a clear, colorless, low vapor pressure hydrocarbon-based, semi-dry coating that is viscous on the surface.

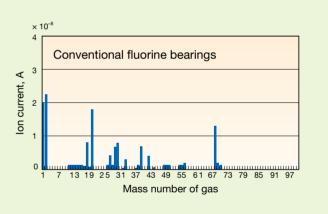
- 1. To open and handle the product: Open the package immediately before use in a clean space with the lowest possible humidity (less than 60%). Handle with gloves for clean rooms. Do not touch the product with bare hands.
- 2. To store: Store the product in a clean dry container such as a desiccator or vacuum chamber when not being used for a long period of time, or if not used immediately after opening. Do not use slushing oil or anti-tarnish paper on the product.
- 3. Do not clean: E-DFO coated products do not require cleaning. Do not clean or wipe the coating on the rolling surface-this will directly affect the lubricating function
- 4. Do not apply new lubricant: E-DFO coated ball screws and linear guides do not require additional lubricant. Do not use NSK K1 lubrication unit, which will degrade E-DFO's lubricating property.
- 5. Installation position: When using ball screws and linear guides vertically, an oil receiver is required under the screw shafts and rails as the E-DFO coating may drop.

Comprehensive evaluation

Clean

	Performance			Compatible operating environment				
Lubricant	Durability	Particle emissions	Outgassing	Operating environment	Ball screws	Linear guides		
E-DFO	0	O 0 N		Normal atmosphere, vacuum	•	•		
Fluororesin	Δ	Δ	0	Normal atmosphere, vacuum	_	_		
MoS ₂	0	Δ/Ο	0	Normal atmosphere, vacuum	•	•		
Commercially available fluorine grease	0	0	Δ	Normal atmosphere, vacuum	•	•		

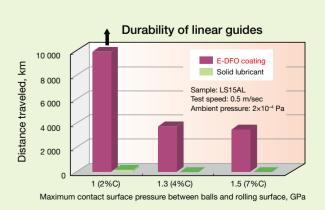

○: Good △: Satisfactory


Low outgassing properties

Outgassing property in high-temperature environments (measurement example with bearings)

Outperforms conventional fluorine-coated bearings.

: Excellent


: Applicable

Long life

Durability of ball screws E-DFO coating extends operating life of ball screws compared to fluororesin coating.

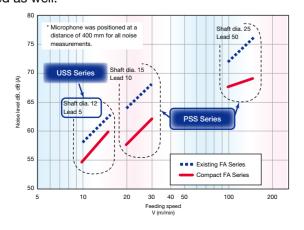
Durability of linear guides E-DFO coating extends operating life of linear guides compared to solids lubricant.

4. Clean Environment Correspondence Standard Ball Screw Compact FA Series USS type for High-Accuracy and Clean Uses

Ideal for semiconductor manufacturing equipment, LCD manufacturing equipment, inspection equipment etc., precision series with a clean function

Applications

Clean uses for semiconductor manufacturing equipment, LCD manufacturing equipment, inspection equipment etc.

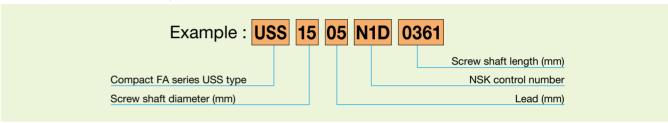

Specifications

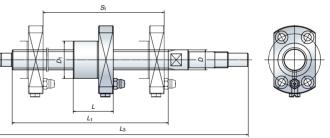
- · Accuracy grade : C3 grade of JIS
- · Axial play: 0 (Oversize ball preload)

Features of USS Type


- · High-speed, low-noise and compact ··· Used with the end-deflector recirculation system, high-speed,
 - low-noise and compact
- Low-dust emissions ······ Dust particles are reduced by 90% compared to general lithium grease because NSK LG2 clean grease is used as the standard.
- Low-noise

Used with the end-deflector recirculation system. Noise is reduced by 6 dB compared to the tube recirculation system. Vibrations are reduced as well.




Low-dust emissions (Series comparison)

Compared to the finished shaft end FA type with a general lithium-based grease, dust count of USS type adopting NSK clean grease LG2 is approximately 1/100

Compact FA series USS type reference number

Dimension table

											Unit: mm									
			Basic load	Basic load ratings (N)		Stroke		ensions	Screw shaft	dimensions	Lea	d accur	асу	Dynamic	B : 11					
Reference no.	Screw shaft	Lead	Dynamic	Static	S	St	Diameter	Overall length	Threaded length	Shaft length	Travel compensation Deviation	Deviation	Variation	preload torque *1	Permissible rotational speed					
	dia. d	l	Ca	C _{0a}	Nominal	Max.	D1	L	L ₁	L ₃	Т	ep	V _u	(N·cm)	(min ⁻¹) * ² Fixed-Simple					
USS1005N1D0221					100	133			162	221		0.010	0.008	0.2 ~ 1.8						
USS1005N1D0321	10	10	10	10		2 930	4 790	200	233	23	29	262	321		0.012	0.008	0.2 ~ 2.0			
USS1005N1D0521		12 5							400	400 433			462	521		0.015	0.010	0.2 ~ 3.0		
USS1205N1D0221										100	130			160	221		0.010	0.008	0.2 ~ 1.8	
USS1205N1D0321			3 200	5 860	200	230	24	30	260	321	0	0.012	0.008	0.2 ~ 2.0	5 000					
USS1205N1D0621			5			500	530			560	621		0.016	0.012	0.2 ~ 3.0					
USS1505N1D0261					100	159			189	261	0.010	0.010	0.008	0.2 ~ 5.0						
USS1505N1D0361	15		5 460	10 200	200	259	28	30	289	361		0.012	0.008	0.2 ~ 5.0						
USS1505N1D0561	15		3 400	10 200	400	459		30	489	561		0.015	0.010	0.2 ~ 6.0						
USS1505N1D0761					600	653			689	761		0.018	0.013	0.2 ~ 6.0	4 130					

^{*1.} Indicates ball screw preload control value. Approximately 0.5 N·cm of torque is added due to thin plastic seals.

Precautions for use ·······

··Temperature range for use: 0 - 80°C

^{*2.} Contact NSK if permissible rotational speed is to be exceeded.

5. Support Units for Clean Environments

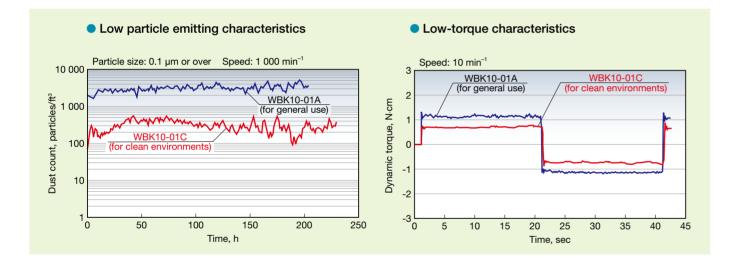
NSK has developed support units for ball screws used in clean environments.

They come equipped with all required parts, such as bearing locknuts to be mounted directly to NSK standard ball screws, of which shaft ends are machined. Please refer to the table of dimensions of standard screw shaft ends for NSK standard ball screws with blank shaft ends.

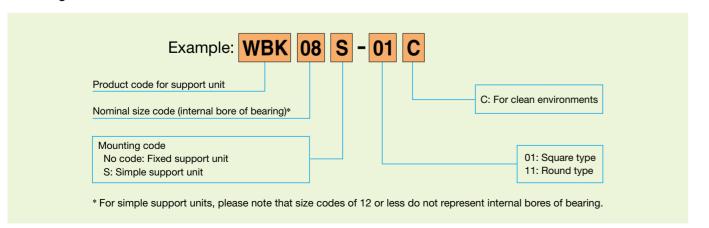
Features of Clean Support Unit

Low torque ···

• Extremely low particle emissions Uses LG2 clean grease, which has a proven feature of low particle


emissions

Particle emissions are 1/10 of general support units


Features low-torque characteristics of special bearings

(50% lower than general support unit)

··· Low-temperature chrome plating is applied for housing surfaces and High rust prevention -----stainless steel is applied for small parts

Coding of reference numbers

Structure

- Two types are available: the square floor-mounted type for surface mounting; and the round type inserted into a hole.
- While the square type consists of a fixed support side unit (motor side) for the ball screw shaft and the opposing simple support side, the round type has no simple support side housing.

4 3		5	6 7
F	ixed support side	Simp	le support side
Part No.	Name of part	Part No.	Name of part
1	Bearing housing	5	Bearing housing
2	Spacer	6	Bearing

Locknut

Set screw

with set piece

7

Snap ring

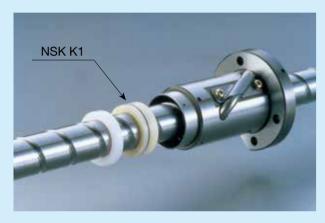
Bearing type, grease, housing surface treatment, and small parts material

Bearing, grease	Surface treatment	Set screw and snap ring material		
Special bearings, LG2	Low-temperature chrome plating	Stainless steel		

3

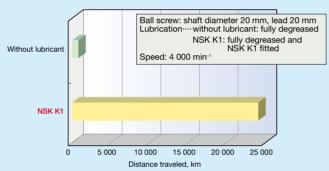
(4)

Specifications


	Fixed suppor	Simple support side support unit					
	A	xial direction	1	Maximum			Radial direction
Reference No.	Basic dynamic	Load limit	Stiffness	starting torque	Reference No.	Bearing Reference No.	Basic dynamic
	load rating $C_a(N)$	(N)	(N/µm)	(N·cm)			load rating C (N)
WBK08-01C (square)	3 100	1 100	36	0.52	WBK08S-01C	606VV	2 260
WBK08-11C (round)	3 100	1 100	30	0.52	WDR003-01C		2 200
WBK10-01C (square)	4 250	1 364	50	1.1 WBK1	WBK10S-01C	608VV	3 300
WBK10-11C (round)	4 230				WBK103-01C	00000	3 300
WBK12-01C (square)	4 700	2 443	57	1.2	WBK12S-01C	6000VV	4 550
WBK12-11C (round)	4 700	2 440	31	1.2	WDI(120-010	00000	4 550
WBK15-01C (square)	5 100	2 757	63	1.3	WBK15S-01C	6002VV	5 600
WBK15-11C (round)	3 100	2131	00	1.5	WDR133-010	0002 V V	3 000

6. Lubrication Unit "NSK K1™"

(1) Ball screws and linear guides, equipped with NSK K1[™] for general industry


NSK has developed the maintenance-free ball screws and linear guides with the newly-developed NSK K1 lubrication unit. (NSK K1 lubrication unit for food processing equipment and medical devices is also available. See pages B25–B26.)

Features of Ball Screws

Durability tests without lubricant

The linear guide without lubricant was damaged after operating over a distance of 8.6 km, but the equipped with NSK K1 operated for more than 20 000 km.

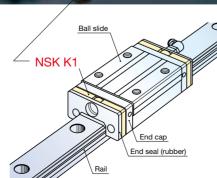
Note: The range of operating temperatures and chemicals to avoid contact with are the same as for the aforementioned linear guides.

Features of NSK Linear Guide™

- NSK linear guides equipped with the NSK K1 lubrication unit enhances lubrication
- The newly developed porous synthetic resin contains ample lubricant to ensure extended maintenance-free performance
- Easy installation: mounts to the inside of the standard-end seal (rubber)

Notes:

To maintain optimal performance of NSK K1 for extended use, please follow the instructions below:


1. Range of operating temperatures · Maximum operating temperature: 50°C Maximum instantaneous operating

temperature: 80°C

2. Chemicals to avoid contact with ... Organic solvents with degreasing

properties, such as hexane and immersion in white kerosene thinner or anti-corrosive oil (containing white kerosene)

Performance of the NSK Linear Guides

Durability test without lubricant

The linear guide without lubricant was damaged after a short period of use, but the equipped with NSK K1 covered a distance exceeding 50 000 km.

Conditions

Linear guide: LH30AN (preload Z1) Lubrication···· without lubricant: fully degreased NSK K1: fully degreased and NSK K1 fitted

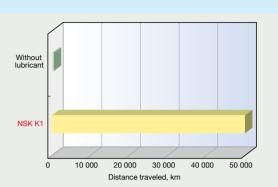
Water-immersion test

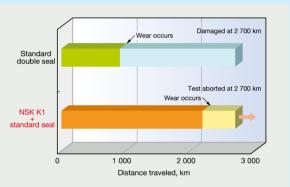
In a water-immersion test run once a week for 24 hour intervals, the ball groove of a linear guide fitted with standard double seals quickly showed wear and damage at 2 700 km. By comparison, the linear guide equipped with NSK K1 showed only 1/3 as much wear as the standard linear guides, confirming the seal's significant lubricating efficacy.

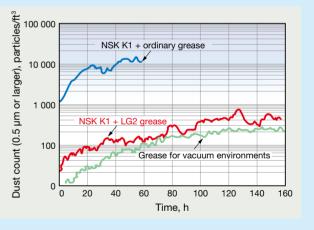
Linear guide: LS30 stainless steel (preload Z1)

Water immersion: Run once a week for 24 hours, fully immersed in water Lubrication: Full grease-packing for food processing machinery

Dust characteristics


The combination of NSK K1 and LG2/LGU clean greases (low particle emission grease) produces no more dust than conventional vacuum grease.


Conditions


Linear guide: LS20 Speed: 36 m/min

Notes: Compatibility of NSK K1 with oils and chemicals

The table at right shows the results of a test in which NSK K1 were immersed in chemicals and oils at 40°C. NSK K1 were found to be stable when in contact with grease and cutting lubricants, and use in combination with these substances presents no problems. However, exposure to chemicals with degreasing properties, such as white kerosene and hexane, quickly removed oil content from the surface of the seals, suggesting that the lubricating effect may deteriorate under these conditions

Chemicals/Oil	Compatibility
Cutting lubricants (water-based, oil-based)	А
Grease (mineral oil-based, ester-based)	А
Rust preventives (without solvents)	А
Rust preventives (with solvents)	В
White kerosene	В
Hexane	С
A: Compatible B: Use sparingly, for brief periods only	C: Incompatible

(2) Linear guides equipped with lubrication unit "NSK K1™" for food processing and medical equipment.

The NSK K1 lubrication unit for food processing and medical equipment is a phenomenal new material seal that is safe and secure. NSK K1 FDA-compliant material is used for the lubrication unit, so it is used without anxiety for food processing and medical equipment.

The newly developed porous synthetic resin contains abundant lubricant.

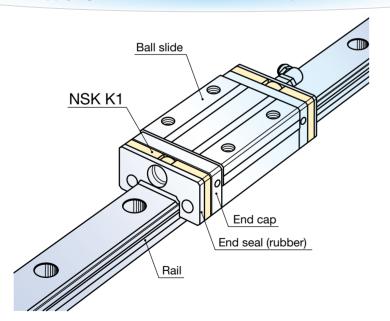
With the basic functions of highly praised NSK K1 for general industry (see pages B23-B24), more sophisticated materials make it applicable in food and medical equipment.

It also offers easy installation, mounted inside the standard end seal (rubber).

Features of NSK K1[™] Lubrication Unit for Sanitary Environments

Very safe to handle

Uses highly safe materials that are compliant with the US Food and Drug Administration's (FDA) hygiene standards for food additives


Environmentally sound

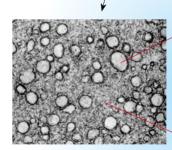
The newly developed porous synthetic resin provides a controlled supply of lubricant, preventing the dispersion of oil in sanitary environments

Resistant to harsh environments

It is durable not only under normal environments but also under harsh environments, such as machinery submersed in water

Applying the reliable NSK K1 FDA-compliant material

To maintain optimal performance of NSK K1 over a long time, please follow the instructions below:


1. Range of operating temperatures: Maximum operating temperature: 50°C

2. Chemicals to avoid contact with: Organic solvent with degreasing properties, such as hexane and thinner Immersion in white kerosene or anti-corrosive oil (with white kerosene ingredients)

100 µm Magnification of NSK K1

Portion containing high proportion of polyolefin

Polyolefin is used for packaging food in supermarkets, replacing dioxingenerating vinyl chloride.

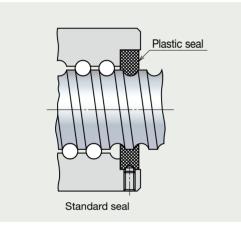
Portion containing high proportion of lubricating oil

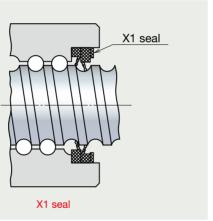
7. NSK High Performance Seals

Examples of dust-contaminated environments include atmospheres where dry powders such as wood particles, rubber fragments, graphite powder, ceramic powder and welding spatter exist. In recent years, demand for dust-resistant performance has increased, partly because protective equipment for machinery is often eliminated for cost-reduction

To meet this demand, NSK has developed a high performance seal more resistant to dust than conventional standard seals.

Linear guide equipped with


 Applications: Woodworking machinery (photo shown at right), tire buffing machinery. welding lines, graphite processing machinery, laser machinery


Features of Ball Screws Equipped with High Performance Seal

- High dust-resistance Improved sealing performance with seal design suitable for dust-resistance. Contributes to durability UP in a contaminated environment.
- Superior grease retention. Ball screw with X1 seals has a double seal structure combining a dust-resistant seal and a grease-retaining seal to improve grease retention performance.
- Low torque design Optimized seal shape and low-friction material has been adopted to achieve low torque and low heat generation

Particle penetration rate test

Note: Nut with X1 seal is slightly longer than the standard

Performance of "X1 seal" installed ball screw

Powder finer than 37- 148 µm in particle diameter, such as iron powder, was mixed with AS2 grease pasted on the screw shaft. After stroking the nut, particle penetration through the X1 seal was measured, and it was less than 1/30 of the penetration through a standard seal Standard seal Reduce particle penetration to within 1/30 X1 sea Shaft diameter 40 mm Lead 20 mm : 2 m/mir 15 Penetration rate % (Rate of foreign matter passed through the seal)

Condition of particle penetration rate test

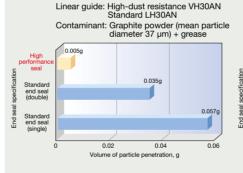

All contaminants adhering to the screw shaft are swept away after passage through X1 seal.

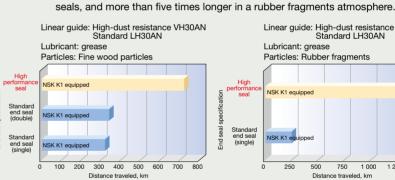
Features of Linear Guides Equipped with High Performance Seal

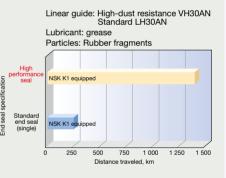
- High dust-resistance Sealed with three lips that extend from the main body of the seal
- Long life Incorporates NSK K1 lubrication unit to enhance dust-resistance and durability

Improved dust-resistance extends the durability of high performance seal in a

fine wood particles atmosphere to more than twice that of standard end

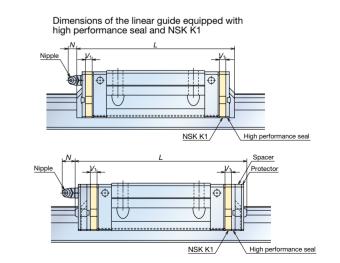

Note: Linear guides with extending seals also coming standard with the NSK K1 lubrication unit, so the length of the ball slide is slightly longer than linear guides with standard seals. (See the table below for more details.)


Long life


Performance of linear guides equipped with high performance seal

High dust-resistance The particle penetration through high performance seal is

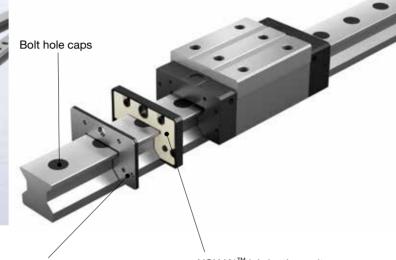
less than 1/10 of the penetration through a standard end seal (single)



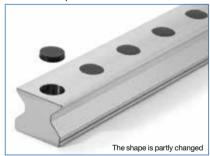
Specifications of linear guides equipped with high performance seal

*****	i iligii polioili	Unit: min	
1	Model No.	Ball slide length L	Nipple extrusion N
VH15	AN/EM BN/GM	70.6 (77) 89.6 (96)	1 (8.2)
VH20	AN/EM BN/GM	87.4 (94.2) 109.4 (116.2)	11.1 (12.3)
VH25	AL/AN/EM BL/BN/GM	97 (104.4) 125 (132.4)	9.6 (12.9)
VH30	AL/AN EM BL/BN/GM	104.4 (114.8) 117.4 (127.8) 143.4 (153.8)	11.4 (14.2)
VH35	AL/AN/EM BL/BN/GM	128.8 (139.2) 162.8 (173.2)	10.9 (13.7)
VH45	AL/AN/EM BL/BN/GM	161.4 (174.2) 193.4 (206.2)	12.5 (14.1)
VH55	AL/AN/EM BL/BN/GM	185.4 (198.2) 223.4 (236.2)	12.5 (14.1)

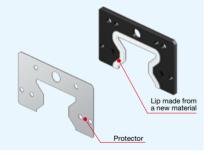
Dimensions in parentheses are those also equipped with protector.


The data shown in the catalog are the results of our tests, and no warranty is given for sealing performance on actual usage on machinery. Sealing performance is affected by usage environment and lubrication conditions. Dust covers and other measures to keep machinery free of dust are recommended.

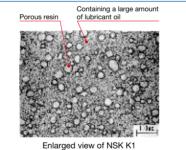
Features of Roller Guide Equipped with V1 Seal


- Best suited for machine tools ···· Product based on the RA Series roller guides having excellent track record in machine tool applications.
- Abrasion resistance Adopted V1 seal made of new materials and a new shape for better abrasion resistance

Roller guide equipped with V1 Seal



Bolt hole caps


These caps prevent foreign matter from building up inside the rail mounting holes. These are standard parts.

V1 seal

V1 Seal made of new materials and in a new shape for better abrasion resistance prevents foreign matter getting into the roller slide for a long period.

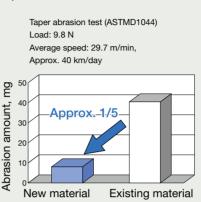
NSK K1[™] lubrication unit

Made of porous synthetic resin containing a large amount of lubrication oil.

When moved through contact with the raceway surface, it supplies fresh lubricating oil.

Rail cover (optional)

Covers the top surface of the rail and prevents foreign matter from eithering in rail mounting

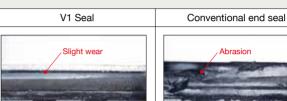

Note: Combination of V1 seal and NSK K1 are standard specifications. As V1 seal is different from a standard one, the overall slide length is slightly longer than that equipped the standard seal. (Refer to the table on page B30 for details)

Performance of roller guide equipped with V1 seal

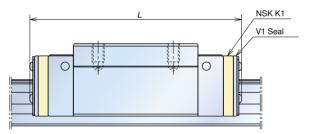
Abrasion resistance

Highly abrasion-resistant material used for seal lip

Dust-contaminated Environments



With this new material, even if lubrication is poor, damage such as roughening of surfaces will not occur.


Durability test under extreme conditions - no lubrication

Test sample: RA35

Operation without lubrication on the seal Feed speed: 500 mm/sec

Applicable range of roller guide equipped with V1 seal

Unit · mm

Model	Roller slide model	Roller slide length L
RA35	AN/AL/EM	140.8
HASS	BN/BL/GM	169
RA45	AN/AL/EM	173.2
RA45	BN/BL/GM	209.2
RA55	AN/AL/EM	203.2
NASS	BN/BL/GM	253.2

Since the sealing property (resistance to foreign matter) is affected by usage or the lubrication environment, please conduct an evaluation test for your particular application.

8. Ball Screws and NSK Linear Guide™ for **High-temperature Environments**

NSK has developed heat-resistant ball screws and linear guides for high-temperature environments requiring heat-resistant performance. In recent years, NSK linear guides and ball screws have been adopted in a variety of industries with such environments, including semiconductor/LCD-related plants, glassware plants and automobile assembly lines.

Features of High-temperature Linear Guides

Maximum operating temperature: 150°C; maximum instantaneous operating temperature: approximately 200°C

(Standard series: 80°C; maximum instantaneous operating temperature:

approximately 100°C)

Heat-resistant bellows: When combined with special purpose heat-resistant bellows, the linear

guides can be used in environments where high-temperature particles, such

as welding spatter, are dispersed

The all-stainless steel products are excellent at resisting not only heat, but All-stainless steel specification:

corrosion and chemicals as well

They are also applicable in vacuum environments

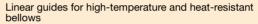
Applicable series and sizes of high-temperature linear guides

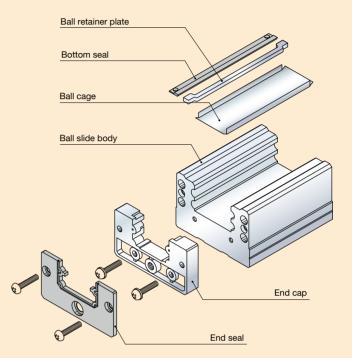
The scope of applications of NSK high-temperature linear guides is shown below.

Other series and model numbers not listed are also available upon request. Please contact NSK.

A li la i	Size symbols*				
Applicable series	Standard material specification	All-stainless steel specification (except for seals)			
NH (high load capacity/aligning)	20, 25, 30, 35, 45, 55	20, 25, 30			
NS (compact low type)	15, 20, 25, 30	15, 20, 25, 30			
LW (broad type)	17, 21, 27	-			
LU (miniature)	09, 12, 15	09, 12, 15			
LE (miniature broad type)	-	09, 12, 15			

Note: *Example of a basic symbol NH 20


Series Size symbolIndicates the rail width or assembly height.


For details, see NSK Catalog, Precision Machine Components (CAT. No.E3162)

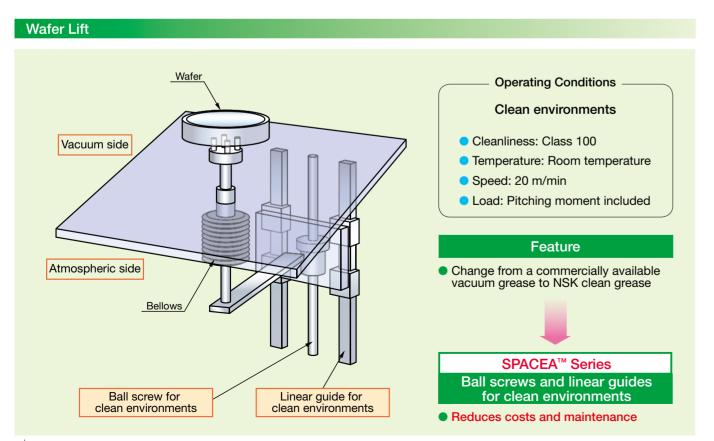
Structure of high-temperature linear guides

Special high-carbon steel with excellent rolling durability or martensite stainless steel featuring high cleanliness are adopted for rails, ball slides and balls. Fluororubber with excellent heat resistance and chemical resistance is used for the seal, and austenite stainless steel with excellent corrosion resistance is used for other components.

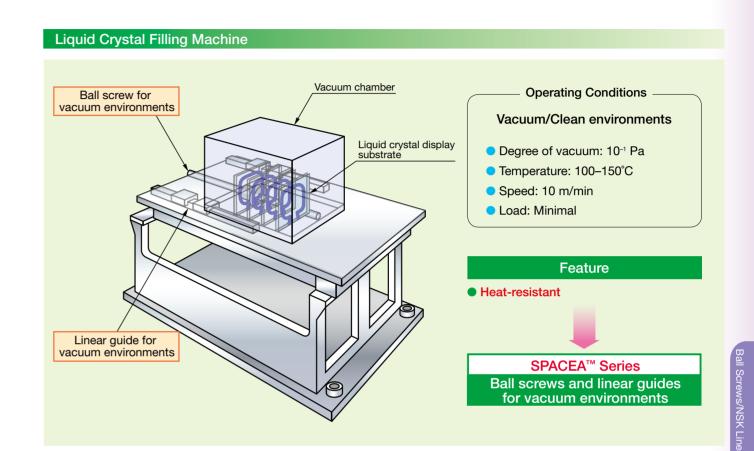
Materials used for components of linear guides for high temperatures

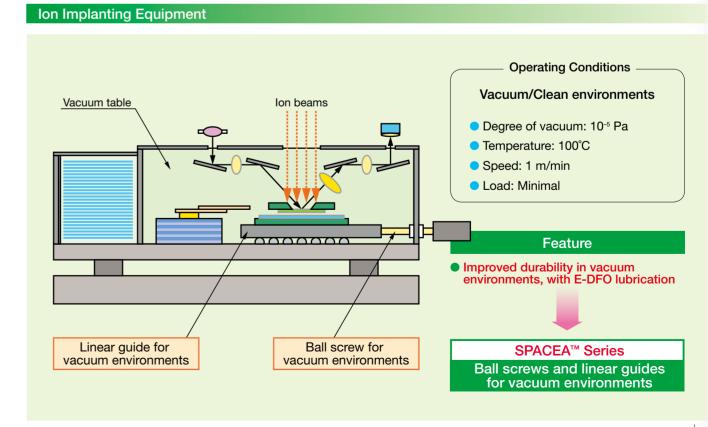
Linear guide component	Material specification
Rail, ball slide	Martensite stainless steel
Ball	SUS440C
End cap, recirculation components of cage, small screws	Austenite stainless steel
Seal component	Fluororubber, etc.

Features of High-temperature Ball Screws


Maximum operating temperature: 150°C; maximum instantaneous operating temperature: approximately 200°C

Materials used for components of ball screws for high temperatures


Ball screw component	Material specification		
Shaft, nut	Martensite stainless steel		
Ball	SUS440C		
Recirculation components	Austenite stainless steel		


1. Semiconductor Manufacturing Equipment

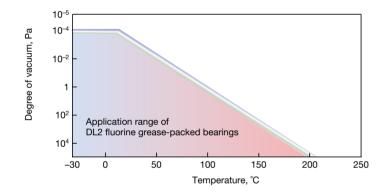
Wafer Conveyor Suction hole Masking shield **Operating Conditions** Clean environments Hoop Cleanliness: Class 100 Temperature: Room temperature Speed: 5 m/min Load: Pitching moment included **Feature** Change from a commercially available vacuum grease to NSK clean grease Atmospheric side Clean side **SPACEA™** Series Ball screws and linear guides Ball screw for Linear guide for for clean environments clean environments clean environments Reduces costs and maintenance

2. LCD/Semiconductor Production Machinery

This section provides descriptions of the physical properties of lubricants and materials used in SPACEA™ Series bearings, ball screws and NSK Linear Guides®. Unit conversion tables listing general weight, length, and hardness are also included for your reference.

Please use the Specification Inquiry for SPACEA™ Series (at the back of the catalog) when contacting NSK about SPACEA™ Series products.

_			
Ap	pen	dic	es


Phy	/sical	Properties of	of Materials	Unit Conversion	Tables	C3-	C2
	Joioui	I IODCI IICO C	n materials.	OTHE CONVENTION	Iddica	\sim	~L

- 1. Properties of SPACEA™ Series Greases
- 2. Characteristics of Representative Solid Lubricants
- 3. Characteristics of Metallic Materials
- 4. Characteristics of Ceramic Materials
- 5. Physical Properties of Plastic Materials
- 6. Properties of Commercially Available Fluorine Lubricants (Krytox)
- 7. Properties of Commercially Available Fluorine Lubricants (Fomblin oil, Klübertemp / Klüberalfa grease)
- 8. Properties of Commercially Available Fluorine Lubricants (Barrierta, Demnum)
- 9. Conversion from International System of Units (SI)
- 10. N-kgf Conversion Table
- 11. kg-lb Conversion Table
- 12. inch-mm Conversion Table
- 13. Viscosity Conversion Table
- 14. Hardness Conversion Table
- 15. Dimensions of Abutment and Fillet
- 16. Tolerances for Shaft Diameters
- 17. Tolerances for Housing Bore Diameters

1. Properties of SPACEA™ Series Greases

Operating environment	Grease	Normal atmosphere, vacuum	Maximum operating temperature °C	Cleanliness(1)	Base oil	Thickener	Kinematic viscosity mm²/s, 40°C	Consistency
Normal Atmosphere	NS7	Normal Atmosphere	100	_	Polyol ester oil + Diester oil	Lithium soap	26	250
Normal atmosphere,	LG2	Normal	70	Class 100–1 000	Mineral oil and synthetic hydrocarbon oil	Lithium soap	32	199
clean	LGU	atmosphere	120		Synthetic hydrocarbon oil	Diurea	96	201
From normal atmosphere up to vacuum, clean	DL2	See the Scope of A Grease-Packed	See the Scope of Applications of DL2 Grease-Packed Bearings below.		Fluorine oil	PTFE	200	280
Normal atmosphere, high-temperature	KPM	Normal atmosphere	230	_	Fluorine oil	PTFE	420	290
	H3G		90	_	High-grade food oil	Food additives	14.8	255
Normal atmosphere, sanitary environments	H1R	Normal atmosphere	120	_	Synthetic hydrocarbon oil	Aluminum alloy soap	150	280
	H1B		200	_	Fluorine oil	PTFE	415	280

Note (1) Cleanliness may vary depending on operating conditions, surrounding structures and other factors.

2. Characteristics of Representative Solid Lubricants

Z. Gridiadichidios di Nepresonitativo Cona Edonounto										
	Relative	Molecular	Crystal	Electric resistance Ω · cm	Maximum operating temperature °C		Coefficient of friction		Particle	
Solid lubricant	density g/cm³	mass	structure		Normal atmosphere	Vacuum	Normal atmosphere	Vacuum	emissions	Outgassing
Molybdenum disulfide MoS ₂	4.8	160.07	Hexagonal crystal system	8.33 (-60°C)	350	650	0.006-0.25	0.001-0.2	Δ	0
Tungsten disulfide WS ₂	7.4	248.02	Hexagonal crystal system	0.40 (92°C)	425	750	0.05-0.28	0.001–0.2	Δ	0
Graphite C	2.24	12.011	Hexagonal crystal system	2.6 × 10⁻³	550	_	0.05-0.3	0.4–1.0	Δ	0
Polytetrafluoroethylene PTFE	2.2	_	Long-chain	1014	260	260	0.04-0.2	0.04-0.2	0	Δ
Polyimide	1.4	_	Long-chain	_	300	300	0.12	0.10	0	Δ
Gold Au	19.3	196.97	Face-centered cubic	2.2 × 10 ⁻⁶	200	200	0.2-0.5	_	Δ	0
Silver Ag	10.5	107.87	Face-centered cubic	1.6 × 10 ⁻⁶	_	600	_	0.2-0.3	Δ	0
Lead Pb	11.3	207.2	Face-centered cubic	2.08 × 10 ⁻⁶	100	350	0.05-0.5	0.05-0.5		0

: Excellent

○: Good △: Satisfactory

3. Characteristics of Metallic Materials

Metallic material	Thermal expansion coefficient × 10-6 / °C	Young's modulus GPa	Hardness ⁽¹⁾ HV	Relative permeability	
Bearing steel SUJ2	12.5	208	700–800		
High corrosion-resistant stainless steel ES1	10.8	206	050.750		
Martensite stainless steel SUS440C	10.1	200	650–750	Ferromagnetic	
High corrosion-resistant, high hardness stainless steel ESZ	10.6	202	580–650		
Precipitation-hardened stainless steel SUS630	10.8	200	390		
High corrosion-resistant, non-magnetic stainless steel ESA	16.0	193	800-1 000 (Hardened surface layer)	1.01 or less	
Austenite stainless steel SUS304	16.3	193	150	1.04 or less	
Completely non-magnetic titanium alloy	9.0	90	450–500	1.001 or less	

Note (1) Converted to HV (Vickers hardness) for comparison

4. Characteristics of Ceramic Materials

○: Excellent	○: Good	△: Satisfactory	×: Unsatisfacto

Item	Unit	Silicon nitride ceramics	Oxide-based ceramics	Bearing steel
Density	g/cm³	3.23	5.9	7.8
Young's modulus	GPa	330	210	208
Fracture toughness	MPa ⋅ m ^{1/2}	6	7.5	18
Hardness (HV)	_	1 500	1 300	700
Thermal expansion coefficient	× 10 ⁻⁶ / °C	2.8	10.5	12.5
Thermal conductivity	W/m·k	31	3	50
Bending strength	MPa	900	1 100	≥2 500
Rotating capability in water immersion	_	0	0	×
Rotating capability in acid solvents	_	Δ	0	×
Cost	_	High	Standard	Low

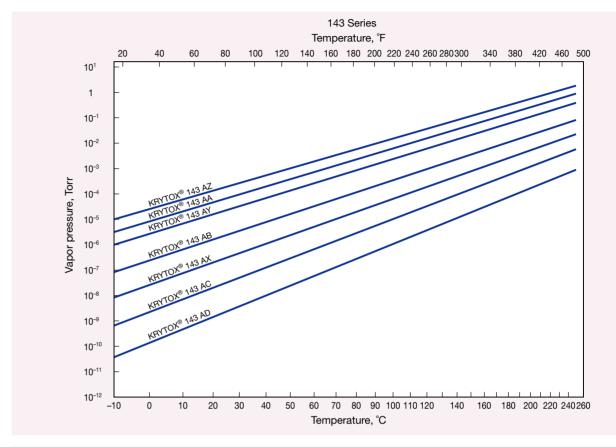
5. Physical Properties of Plastic Materials

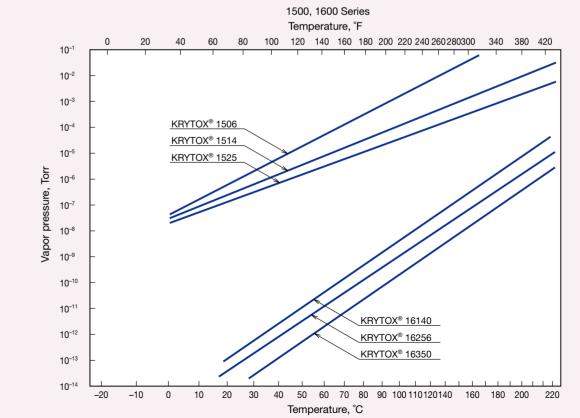
Plastic materials used for the cage materials of bearings for special environments are generally doped with reinforcement such as carbon fibers, solid lubricants such as MoS₂, and abrasion-resistant additives.

Plastic	Classification(1)	Elasticity coefficient GPa	Strength GPa	Density g/cm³	Tm ⁽²⁾	Heat distortion temperature ⁽³⁾	pendice
Polyphenylene sulfide (PPS)	M, C	1.4	0.155	1.64	285	>260	C
Polyetheretherketone (PEEK)	M, C	3.9	0.1	1.3	335	152	harac
Heat reversible polyimide (TPI)	M, C	2.94	0.092	1.33	388	238	rease terist
Tetrafluoroethylene-ethylene copolymer (ETFE)	M, C	0.88-1.37	0.04-0.046	1.7–1.76	260	74 (104)	tics a
Polyvinylidene fluoride (PVDF)	M, C	1.6	0.045	1.76	170	90 (150)	nd Pl
Polytetrafluoroethylene (PTFE)	С	0.40	0.028	2.16	327	- (120)	nts, i nysic
Polyamide (nylon 6-6)	M, C	3.0	0.08	1.14	264	60 (180)	Greases, Lubricants, Material Characteristics and Physical Properties
Nylon 4-6	M, C	3.14	0.1	1.18	295	220) perti

Notes (1) Classification M: Moldable C: Crystalline
(2) Tm: Melting point
(3) Heat distortion temperature values in parentheses are at 454 kPa, all other values are at 181 MPa.

6. Properties of Commercially Available Fluorine Lubricants (Krytox)


Krytox oil (Dupont)


Pro	duct	Average molecular		Kinema r	ntic visco		Viscosity index	Pour point		(Knudser	ressure n number) a		Amount of evaporation, mass %	Density g/cm³	Range of operating
		weight	20°C	38°C	50°C	100°C	mack		20°C	38°C	100°C	260°C	(Temperature, 22 hours)	(0°C)	temperatures
	AZ	1 850	40	18	_	3.3 (99°C)	29	-55	_	5 × 10 ⁻²	-	200	80 (204°C)	_	_
	AA	2 450	85	35	_	5.3 (99°C)	89	-50	_	1 × 10 ⁻²	_	100	40 (204°C)	_	_
	AY	3 000	150	55	_	7.5 (99°C)	107	-45	_	5 × 10⁻³	_	20	20 (204°C)	_	_
143 Series	AB	3 700	230	85	_	10.3 (99°C)	113	-40	_	7 × 10 ⁻⁴	_	4	5 (204°C)	_	_
OCHOS	AX	4 800	450	150	_	16.4 (99°C)	125	-35	_	1 × 10 ⁻⁴	_	1	2 (204°C)	_	_
	AC	6 250	800	270	_	26 (99°C)	134	-35	_	1 × 10⁻⁵	_	0.3	1 (204°C)	_	_
	AD	8 250	1 500	500	_	43 (99°C)	144	-30	_	8 × 10 ⁻⁷	_	4 × 10 ⁻²	3 (260°C)	_	_
	1506	_	60	_	15	4	_	-45	7 × 10 ⁻⁵	_	0.1	_	_	_	_
1500 Series	1514	_	140	_	30	7	_	-40	7 × 10 ⁻⁵	_	3 × 10 ⁻²	_	_	_	_
Selles	1525	_	250	87	50	10	_	-35	7 × 10 ⁻⁵	_	7 × 10 ⁻³	_	_	_	_
	16140	_	1 400	450	250	40	_	-25	1 × 10 ⁻¹¹	_	4 × 10 ⁻⁷	_	_	_	_
1600	16256	_	2 560	_	400	55	_	-15	7×10^{-12}	_	1 × 10 ⁻⁷	_	_	_	_
Series	16350	_	3 500	_	600	85	_	-5	7×10^{-13}	_	2 × 10 ⁻⁸	_	_	_	_
	100	_	7	4	_	_	_	<-55	_	_	_	_	87 (121°C)	1.87	-55/65
	101	_	16	8	_	2	_	<-55	_	_	_	_	29 (121°C)	1.89	-50/100
	102	_	36	15	_	3	_	-50	_	_	_	_	20 (121°C)	1.91	-50/130
GPL	103	_	80	30	_	5	_	-40	_	_	_	_	7 (121°C)	1.92	-40/155
Series	104	_	180	60	_	9	_	-35	_	_	_	_	3 (121°C)	1.93	-35/180
	105	_	550	160	_	18	_	-30	_	_	_	_	<5 (204°C)	1.94	-30/205
	106	_	810	270	_	25	_	-25	_	_	_	_	<2 (204°C)	1.95	-25/260
	107	_	1 600	440	_	42	_	-20	_	_	_	_	<1 (204°C)	1.95	-20/288

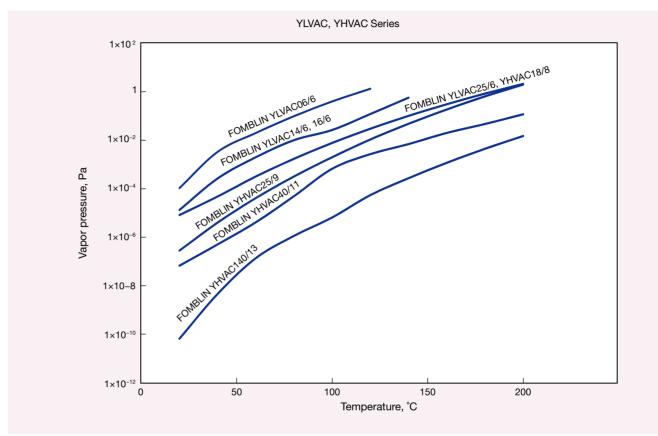
Krytox grease

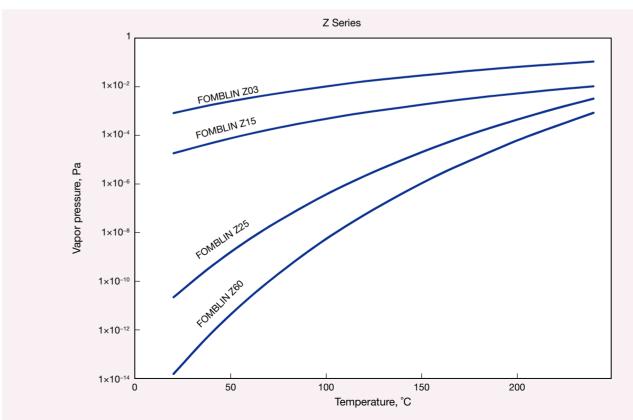
Product	Base oil	Kinematic viscosity mm²/s	Thickener	Consistency NLGI No.	Vapor p (Knudsen r	ressure number) Pa	Oil separation rate mass %	Amount of evaporation mass %	Density g/cm³	Additive
		(38°C)		INLGI NO.	38°C	260°C	(204°C, 30h)	(204°C, 6.5h)	(25°C)	
240AZ	143AZ	18			5 × 10 ⁻²	200	15	60	1.89	None
240AA	143AA	35			1 × 10 ⁻²	100	15	30	1.91	None
240AB	143AB	85	PTFE	2	7 × 10⁻⁴	4	11	5	1.92	None
240AC	143AC	270			1 × 10⁻⁵	0.3	10	1	1.93	None
240AD	143AD	500			8 × 10 ⁻⁷	4 × 10 ⁻²	10	<1	1.93	None
250AC	143AC	270			1 × 10⁻⁵	0.3	11	1	2.02	MoS ₂ 5%
280AC	143AC	270		2	1 × 10⁻⁵	0.3	11	1	1.95	Anti-rust agent 1%
283AC	143AC	270	PTFE		1 × 10⁻⁵	0.3	11	1	1.97	Anti-rust agent 3%
280AD	143AD	500			8 × 10 ⁻⁷	4 × 10 ⁻²	_	<1	_	Anti-rust agent 1%
283AD	143AD	500			8 × 10 ⁻⁷	4 × 10 ⁻²	_	<1	_	Anti-rust agent 3%
LVP	16256	2 560	PTFE	2	1 × 10 ⁻¹¹	1 × 10 ⁻³	13.8	0.3 (204°C, 22h)	1.94	None
GPL204	GPL104	180 (20°C)			_	_	6 (99°C)	_	_	None
GPL224	GPL104	180 (20°C)	PTFE		_	_	6 (99°C)	_	_	Anti-rust agent
GPL207	GPL107	1 600 (20°C)		_	_	_	10	_	_	None
GPL227	GPL107	1 600 (20°C)			_	_	10	_	_	Anti-rust agent

Vapor pressure of Krytox oil

Properties of Commercially Avail Fluorine Lubricants (Krytox)

7. Properties of Commercially Available Fluorine Lubricants (Fomblin oil, Klübertemp / Klüberalfa Grease)


Fomblin oil (Solvay Specialty Polymers)

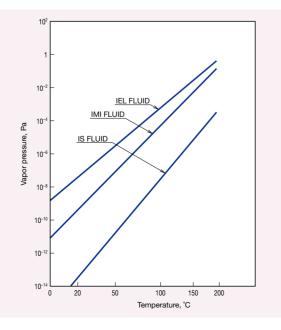

Pro	oduct	Average molecular		atic viscos mm²/s	ity	Viscosity	Pour point	Vapor p (Knudser P	number)	Amount of evaporation, mass %	Density g/cm³
		weight	20°C	40°C	100°C	IIIdox		20°C	100°C	(Temperature, 22 hours)	(20°C)
	Y04	1 500	38	15	3.2	60	-58	_	_	9 (120°C)	1.87
	Y06	1 800	60	22	3.9	70	-50	_	_	6 (120°C)	1.88
Y Series	Y25	3 200	250	80	10	108	-35	_	_	15 (204°C)	1.90
Selles	Y45	4 100	470	147	16	117	-30	_	_	1.7 (204°C)	1.91
	YR	6 250	1 200	345	33	135	-25	_	_	1.2 (204°C)	1.91
	06/6	_	64	_	_	_	-50	≤1.1 × 10 ⁻⁴	≤4.0 × 10 ⁻¹	_	1.88
YLVAC	14/6	_	148	_	_	_	-45	≤1.3 × 10 ⁻⁵	≤2.7 × 10 ⁻²	_	1.89
Series	16/6	_	168	_	_	_	-45	≤2.7 × 10 ⁻⁶	≤2.7 × 10 ⁻²	_	1.90
	25/6	_	276	_	_	_	-35	≤8.0 × 10 ⁻⁶	≤8.0 × 10 ⁻³	_	1.90
	18/8	_	190	_	9	_	-42	≤2.6 × 10 ⁻⁶	≤2.6 × 10 ⁻²	_	1.89
YHVAC	25/9	_	285	_	12	_	-35	≤2.6 × 10 ⁻⁷	≤2.6 × 10⁻³	_	1.90
Series	40/11	_	474	_	_	_	-32	≤6.6 × 10 ⁻⁸	≤6.6 × 10 ⁻⁴	_	1.91
	140/13	_	1 508	_	_	_	-23	≤6.5 × 10 ⁻¹¹	≤6.5 × 10⁻⁵	_	1.92
	Z03	4 000	30	18	5.6	317	-90	_	_	6.0 (149°C)	1.82
Z	Z15	8 000	160	92	28	334	-80	_	_	1.2 (204°C)	1.84
Series	Z25	9 500	263	157	49	358	-75	_	_	0.4 (204°C)	1.85
-	Z60	13 000	600	355	98	360	-63	_	_	0.2 (204°C)	1.85

Klübertemp / Klüberalfa grease (NOK Klüber)

Proc	duct	Base oil	Thickener	Consistency NLGI No.	Oil separation Rate mass % (204°C, 30h)	Amount of evaporation mass % (204°C, 22h)	Density g/cm³ (20°C)	Additive	Working Temperature Range °C
	GR OT20			2	_	_	1.90	None	-50/70
	GR UT18	Fomblin oil		2	_	_	1.90	None	-30/230
Klübertemp	GR RT15	Y series	PTFE	2	≤12	≤3	1.90	None	-20/250
	GR RT2			2	≤12	≤3	1.90	Anti-rust agent (solid)	-20/250
	GR YVAC1			1	≤14	≤1	1.90	None	-20/250
	GR YVAC2	Fomblin oil YHVAC140/13	PTFE	2	≤12	≤1	1.90	None	-20/250
Klüberalfa	GR YVAC3			3	≤10	≤1	1.90	None	-20/250
	GR ZLHT	Fomblin oil	PTFE	2	≤12	≤6	1.90	None	-65/200
	GR ZNF	Z series	FIFE	3	≤9	≤2	1.90	None	-60/200

Vapor pressure of Fomblin oil

8. Properties of Commercially Available Fluorine Lubricants (Barrierta, Demnum)

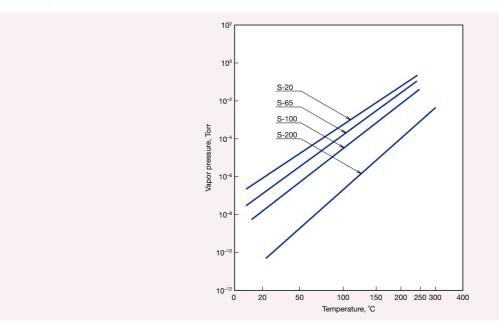

Barrierta oil (NOK Klüber)

I Series	Average molecular weight	Kinematics mm		Viscosity index	Pour point °C	Vapor pressure (Knudsen number) Pa	Density g/cm³
	molecular weight	20°C	40°C	index		(20°C)	(20°C)
IEL FLUID	3 500	280	95	130	-45	_	1.90
IMI FLUID	4 500	550	180	138	-40	_	1.90
IS FLUID	7 500	1 400	390	140	-30	_	1.90

Barrierta grease

Product	Base oil	Kinematic viscosity mm²/s (40°C)	Thickener	Consistency NLGI No.	Vapor pressure (Knudsen number) (20°C)	Oil separation rate mass% (204°C, 24h)	Amount of evaporation mass% (204°C, 22h)	Density g/cm³ (25°C)	Additive
IEL	IEL FLUID	95		2	6×10⁻⁵	-	-	1.90	Anti-rust agent
IMI	IMI FLUID	180	PTFE	2	7×10 ⁻⁷	_	-	1.90	Anti-rust agent
IS	IS FLUID	390		2	2×10 ⁻⁸	-	-	1.90	Anti-rust agent
L55/2 J	IS FLUID	390	PTFE	2	2×10⁻8	-	-	1.95	Anti-rust agent
IEL/V	_	65		2	5×10⁻⁶	7.0	0.2	1.95	Anti-rust agent
IMI/V	-	180	PTFE	2	9×10 ⁻¹⁰	7.0	0.2	1.95	Anti-rust agent
IS/V	_	415	PIFE	2	5×10 ⁻¹⁴	7.0	0.1	1.95	None
SUPER IS/V	_	415		2	5×10 ⁻¹⁴	7.0	0.1	1.95	None

Vapor pressure of Barrierta oil


Demnum oil (Daikin)

Product	Average molecular weight	К	inematic viscos mm²/s	ity	Viscosity index	Pour point	Density g/cm³
	molecular weight	20°C	40°C	60°C		°C	(20°C)
S-20	2 700	53	25	14	150	- 75	1.86
S-65	4 500	150	65	33	180	-65	1.86
S-100	5 600	250	100	50	200	-60	1.88
S-200	8 400	500	200	95	210	-53	1.89

Demnum grease

Product	Base oil	Kinematic viscosity mm²/s (40°C)	Thickener	Consistency NLGI No.	Oil separation rate mass % (200°C, 30h)	Amount of evaporation mass % (200°C, 22h)	Additive
L65	S-65	65	PTFE	2	<12	<1	None
L100	S-100	100	PTFE	2	<11	<1	None
L200	S-200	200	PTFE	2	<10	<0.1	None

Vapor pressure of Demnum oil

Appendices

9. Conversion from International System of Units (SI)

• Conversion Table of SI, CGS, and engineering system of units

Quantity System of units	Length	Mass	Time	Temperature	Acceleration	Force	Stress	Pressure	Energy	Power
SI	m	kg	s	K, ℃	m/s²	N	Pa	Pa	J	W
CGS	cm	g	s	°C	Gal	dyn	dyn/cm²	dyn/cm²	erg	erg/s
Engineering	m	kgf·s²/m	s	°C	m/s²	kgf	kgf/m²	kgf/m²	kgf∙m	kgf·m/s

Conversion rate from SI units

Conversion example: 1N = 1/9.80665 kgf

2	SI unit		Units other than SI		
Quantity	Name of unit	Symbol	Name of unit	Symbol	Conversion rate from SI unit
			Degree	۰	180/π
Angle	Radian	rad	Minute	,	10 800/π
			Second	"	648 000/π
Length	Meter	m	Micron	μ	10 ⁶
Lengui	Weter	m	Angstrom	Α	1010
Area	Square meter	m²	Are	а	10-2
Alea	Square meter	111	Hectare	ha	10-4
Volume	Cubic meter	m³	Liter	I, L	10³
volume	Cubic meter	1115	Deciliter	dl, dL	10⁴
			Minute	min	1/60
Time	Second	s	Hour	h	1/3 600
			Day	d	1/86 400
Number of vibrations, Frequency	Hertz	Hz	Cycle	S ⁻¹	1
Number of revolutions	Revolution per second	S ⁻¹	Revolutions per minute	rpm	60
Creed	Mataunauaaand	/-	Kilometer per hour	km/h	3 600/1 000
Speed	Meter per second	m/s	Knot	kn	3 600/1 852
A I ti	NA-4	/2	Gal	Gal	10 ²
Acceleration	Meter per second ²	m/s²	G	G	1/9.80665
Mass	Kilogram	kg	Ton	t	10 ⁻³
			Kilogram force	kgf	1/9.80665
Force	Newton	N	Kilogram-ton	tf	1/(9.80665 × 10 ³)
			Dyne	dyn	10³
Torque and moment of force	Newton-meter	N⋅m	Kilogram-force-meter	kgf⋅m	1/9.80665
	Pascal	Pa	Kilogram per square centimeter	kgf/cm²	1/(9.80665×10 ⁴)
Strength	(Newton per square meter)	(N/m²)	Kilogram per square millimeter	kgf/mm²	1/(9.80665×10°)

Prefixes of SI units

Exponential	Pre	efix	Exponential	Pre	efix
notation	Name	Symbol	notation	Name	Symbol
1018	Exa	E	10-1	Deci	d
1015	Peta	Р	10-2	Centi	С
1012	Tera	Т	10-3	Milli	m
10°	Giga	G	10-6	Micro	μ
106	Mega	М	10 ⁻⁹	Nano	n
10³	Kilo	k	10-12	Pico	р
10 ²	Hecto	h	10-15	Femto	f
10¹	Deca	da	10-18	Atto	а

Conversion rate from SI units (continued)

.	SI unit		Units other than SI		
Quantity	Name of unit	Symbol	Name of unit	Symbol	Conversion rate from SI unit
			Kilogram-force per square meter	kgf/m²	1/9.80665
			Meter water column	mH_2O	1/(9.80665 × 10 ³)
Pressure	Pascal	Pa	Millimeter mercury	mmHg	760/(1.01325 × 10⁵)
	(Newton per square meter)	(N/m²)	Torr	Torr	760/(1.01325 × 10 ⁵)
			Bar	bar	10⁻⁵
			Atmospheric pressure	atm	1/(1.01325 × 10⁵)
			Erg	erg	10 ⁷
		J	Calorie (international)	cal _{IT}	1/4.1868
Energy	ergy Joule (Newton-meter)		Kilogram-force-meter	kgf⋅m	1/9.80665
	(Nowton motor)	(N·m)	kilowatt-hour	kW∙h	1/(3.6 × 10 ⁶)
			Metric horsepower-hour	PS⋅h	= 3.77672 × 10 ⁻⁷
		147	Kilogram-force per meter per second	kgf/m/s	1/9.80665
Power	Watt (Joule per second)	W (J/s)	Kilocalorie per second	kcal/h	1/1.163
	(coals per cooling)	(0,0)	Metric horsepower	PS	= 1/735.4988
Viscosity, Viscosity index	Pascal-second	Pa⋅s	Poise	Р	10
Kinematic viscosity	Square meter per second	m²/s	Stokes	St	10⁴
•			Centi-Stokes	cSt	106
Temperature, Temperature difference	Kelvin, Celsius	K, ℃	Degree	°C	(See Note)(1)
Electric current, Magnetomotive force	Ampere	Α	Ampere	Α	1
Electrical voltage, Electromotive force	Volt	V	(Watt per ampere)	(W/A)	1
Magnetic field strength	Ampere per meter	A/m	Oersted	Oe	4π/10³
Magnetic flux density	Tesla	Т	Gauss	Gs	104
iviagnetic nux density	Icola	ı	Gamma	γ	10°
Electric resistance	Ohm	Ω	(Volt per ampere)	(V/A)	1

Note (1) To convert TK to $\theta^{\circ}C$, $\theta = T - 273.15$. In the case of temperature difference, $\Delta T = \Delta \theta$, with ΔT and $\Delta \theta$ indicating temperature differences measured in degrees Kelvin and Celsius, respectively.

Remarks Definitions of units and symbols are in parentheses.

10. N-kgf Conversion Table

Example: To convert 10N to kgf, go to 10 in the central column of the first block, then locate the corresponding figure in the kgf column on the right. You will see that 10N = 1.0197 kgf. To convert 10 kgf to N, find the number in the N column on the left that corresponds to 10, and you will see that 10 kgf = 98.066N.

1N = 0.1019716 kgf 1 kgf = 9.80665N

N		kgf	N		kgf	N		kgf
9.8066	1	0.1020	333.43	34	3.4670	657.05	67	6.8321
19.613	2	0.2039	343.23	35	3.5690	666.85	68	6.9341
29.420	3	0.3059	353.04	36	3.6710	676.66	69	7.0360
39.227	4	0.4079	362.85	37	3.7729	686.47	70	7.1380
49.033	5	0.5099	372.65	38	3.8749	696.27	71	7.2400
58.840	6	0.6118	382.46	39	3.9769	706.08	72	7.3420
68.647	7	0.7138	392.27	40	4.0789	715.89	73	7.4439
78.453	8	0.8158	402.07	41	4.1808	725.69	74	7.5459
88.260	9	0.9177	411.88	42	4.2828	735.50	75	7.6479
98.066	10	1.0197	421.69	43	4.3848	745.31	76	7.7498
107.87	11	1.1217	431.49	44	4.4868	755.11	77	7.8518
117.68	12	1.1237	441.30	45	4.5887	764.92	78	7.9538
127.49	13	1.3256	451.11	46	4.6907	774.73	79	8.0558
137.29	14	1.4276	460.91	47	4.7927	784.53	80	8.1577
147.10	15	1.5296	470.72	48	4.8946	794.34	81	8.2597
156.91	16	1.6315	480.53	49	4.9966	804.15	82	8.3617
166.71	17	1.7335	490.33	50	5.0986	813.95	83	8.4636
176.52	18	1.8355	500.14	51	5.2006	823.76	84	8.5656
186.33	19	1.9375	509.95	52	5.3025	833.57	85	8.6676
196.13	20	2.0394	519.75	53	5.4045	834.37	86	8.7696
205.94	21	2.1414	529.56	54	5.5065	853.18	87	8.8715
215.75	22	2.2434	539.37	55	5.6084	862.99	88	8.9735
225.55	23	2.3453	549.17	56	5.7104	872.79	89	8.0755
235.36	24	2.4473	558.98	57	5.8124	882.60	90	9.1774
245.17	25	2.5493	568.79	58	5.9144	892.41	91	9.2794
254.97	26	2.6513	578.59	59	6.0163	902.21	92	9.3814
264.78	27	2.7532	588.40	60	6.1183	912.02	93	9.4834
274.59	28	2.8552	598.21	61	6.2203	921.83	94	9.5853
284.39	29	2.9572	608.01	62	6.3222	931.63	95	9.6873
294.20	30	3.0591	617.82	63	6.4242	941.44	96	9.7893
304.01	31	3.1611	627.63	64	6.5262	951.25	97	9.8912
313.81	32	3.2631	637.43	65	6.6282	961.05	98	9.9932
323.62	33	3.3651	647.24	66	6.7301	970.86	99	10.095

11. kg-lb Conversion Table

Example: To convert 10 kg to lbs., go to 10 in the central column of the first block and find the corresponding number in the lb column on the right. You will see that 10 kg = 22.046 lb. To convert 10 lb. to kg, find the number in the kg column on the left corresponding to 10, and you will see that 10 lb. = 4.536 kg

1 kg = 2.2046226 lb 1 lb = 0.45359237 kg

kg		lb		kg		lb		kg		lb
0.454	1	2.205		15.422	34	74.957		30.391	67	147.71
0.907	2	24.409		15.876	35	77.162		30.844	68	149.91
1.361	3	6.614		16.329	36	79.366		31.298	69	152.12
1.811	4	8.818		16.783	37	81.571		31.751	70	154.32
2.268	5	11.023		17.237	38	83.776		32.205	71	156.53
2.722	6	13.228		17.690	39	85.980		32.659	72	158.73
3.175	7	15.432		18.144	40	88.185		33.112	73	160.94
3.629	8	17.637		18.597	41	90.390		33.566	74	163.14
4.082	9	19.842		19.051	42	92.594		34.019	75	165.36
4.536	10	22.046		19.504	43	94.799		34.473	76	167.55
4.990	11	24.251		19.958	44	97.003	_	34.927	77	169.76
5.443	12	26.455		20.412	45	99.208		35.380	78	171.96
5.897	13	28.660		20.865	46	101.41		35.834	79	174.17
6.350	14	30.865		21.319	47	103.62		36.287	80	176.37
6.804	15	33.069		21.772	48	105.82		36.741	81	178.57
7.257	16	35.274		22.226	49	108.03	-	37.195	82	180.78
7.711	17	37.479		22.680	50	110.23		37.648	83	182.98
8.165	18	39.683		23.133	51	112.44		38.102	84	185.19
8.618	19	41.888		23.587	52	114.64		38.555	85	187.39
9.072	20	44.092		24.040	53	116.84		39.009	86	189.60
9.525	21	46.297		24.494	54	119.05	-	39.463	87	191.80
9.979	22	48.502		24.948	55	121.25		39.916	88	194.01
10.433	23	50.706		25.401	56	123.46		40.370	89	196.21
10.886	24	52.911		25.855	57	125.66		40.823	90	198.42
11.340	25	55.116		26.308	58	127.87		41.277	91	200.62
11.793	26	57.320		26.762	59	130.07	-	41.730	92	202.83
12.247	27	59.525		27.216	60	132.28		42.184	93	205.03
12.701	28	61.729		27.669	61	134.48		42.638	94	207.23
13.154	29	63.934		28.123	62	136.69		43.091	95	209.44
13.608	30	66.139		28.576	63	138.89		43.545	96	211.64
14.061	31	68.343		29.03	64	141.10	-	43.998	97	213.85
14.515	32	70.548		29.484	65	143.30		44.452	98	216.05
14.969	33	72.753		29.937	66	145.51		44.906	99	218.26
			-				-			

Appendices

12. Inch-mm Conversion Table

1" = 25.4 mm

I		0		0	0	4	_	_	7	0	I	= 25.4 mm
	Decimal number	0	1	2	3	4	5 mm	6	7	8	9	10
		0.000	05.400	50.000	70.000	404.000		450.400	477.000	000 000	000 000	054.000
0 1/64	0.000000 0.015625	0.000 0.397	25.400 25.797	50.800 51.197	76.200 76.597	101.600 101.997	127.000 127.397	152.400 152.797	177.800 178.197	203.200 203.597	228.600 228.997	254.000 254.397
1/32	0.013623	0.397	26.194	51.197	76.994	101.997	127.397	153.094	178.594	203.597	229.394	254.397
3/64	0.031230	1.191	26.591	51.991	77.391	102.394	128.191	153.591	178.991	203.334	229.791	255.191
1/16	0.062500	1.588	26.988	52.388	77.788	103.183	128.588	153.988	179.388	204.788	230.188	255.588
5/64	0.078125	1.984	27.384	52.784	78.184	103.584	128.984	154.384	179.784	205.184	230.584	255.984
3/32	0.093750	2.381	27.781	53.181	78.581	103.981	129.381	154.781	180.181	205.581	230.981	256.381
7/64	0.109375	2.778	28.178	53.578	78.978	104.378	129.778	155.178	180.578	205.978	231.378	256.778
1/8	0.125000	3.175	28.575	53.975	79.376	104.775	130.175	155.575	180.975	206.375	231.776	257.175
9/64	0.140625	3.572	28.972	54.372	79.772	105.172	130.572	155.972	181.372	206.772	232.172	257.572
5/32	0.156250	3.969	29.369	54.769	80.169	105.569	130.969	156.369	181.769	207.169	232.569	257.969
11/64	0.171875	4.366	29.766	55.168	80.566	105.966	131.366	156.766	182.166	207.566	232.966	258.366
3/16 13/64	0.187500 0.203125	4.762	30.162	55.562	80.962	106.362	131.762 132.159	157.162	182.562	207.962	233.362 233.459	258.762
7/32	0.203125	5.159 5.556	30.559 30.956	55.959 56.356	81.359 81.756	106.759 107.156	132.159	157.559 157.956	182.959 183.356	208.359 208.756	233.459	259.159 259.556
	0.234375	5.953	31.353	56.753	82.153	107.150	132.953	158.353	183.753	200.750	234.553	259.953
1/4	0.250000	6.350	31.750	57.150	82.550	107.950	133.350	158.750	184.150	209.550	234.950	260.350
17/64	0.265625	6.747	32.147	57.547	82.947	108.347	133.747	159.147	184.547	209.947	235.347	260.747
9/32	0.281250	7.144	32.544	57.944	83.344	108.744	134.144	159.544	184.944	210.344	235.744	261.144
19/64		7.541	32.941	58.341	83.741	109.141	134.541	159.941	185.341	210.741	236.141	261.541
5/16	0.312500	7.938	33.338	58.738	84.138	109.538	134.938	160.338	185.738	211.138	236.538	261.938
21/64		8.334	33.734	59.134	84.534	109.934	135.334	160.734	186.134	211.534	236.934	262.334
11/32		8.731	34.131	59.531	84.931	110.331	135.731	161.131	186.531	211.931	237.331	262.731
	0.359375	9.128	34.528	59.928	85.328	110.728	136.128	161.528	186.928	212.328	237.728	263.128
3/8	0.375000	9.525	34.925	60.325	85.725	111.125	136.525	161.925	187.325	212.725	238.125	263.525
25/64 13/32	0.390625 0.406250	9.922	35.322	60.722	86.122	111.522	136.922	162.322	187.722	213.122	238.522 238.919	263.922
27/64		10.319 10.716	35.719 36.116	61.119 61.516	86.519 86.916	111.919 112.316	137.319 137.716	162.719 163.116	188.119 188.516	213.519 213.916	239.316	264.319 264.716
7/16	0.437500	11.112	36.512	61.912	87.312	112.712	138.112	163.512	188.912	214.312	239.712	265.112
29/64		11.509	36.909	62.309	87.709	113.109	138.509	163.909	189.309	214.709	240.109	265.509
	0.468750	11.906	37.306	62.706	88.106	113.506	138.906	164.306	189.706	215.106	240.506	265.906
31/64	0.484375	12.303	37.703	63.103	88.503	113.903	139.303	164.703	190.103	215.503	240.903	266.303
1/2	0.500000	12.700	38.100	63.500	88.900	114.300	139.700	165.100	190.500	215.900	241.300	266.700
33/64		13.097	38.497	63.897	89.297	114.697	140.097	165.497	190.897	216.297	241.697	267.097
17/32	0.531250	13.494	38.894	64.294	89.694	115.094	140.494	165.894	191.294	216.694	242.094	267.494
35/64		13.891	39.291	64.691	90.091	115.491	140.891	166.291	191.691	217.091	242.491	267.891
9/16	0.562500	14.288	39.688	65.088	90.488	115.888	141.288	166.688 167.084	192.088	217.488	242.888	268.288
37/64 19/32	0.578125 0.593750	14.684 15.081	40.084 40.481	65.484 65.881	90.884 91.281	116.284 116.681	141.684 142.081	167.064	192.484 192.881	217.884 218.281	243.284 243.681	268.684 269.081
39/64		15.478	40.878	66.278	91.678	117.078	142.478	167.878	193.278	218.678	244.078	269.478
5/8	0.625000	15.875	41.275	66.675	92.075	117.475	142.875	168.275	193.675	219.076	244.475	269.875
	0.640625	16.272	41.672	67.072	92.472	117.872	143.272	168.672	194.072	219.472	244.872	270.272
	0.656250	16.669	42.069	67.469	92.869	118.269	143.669	169.069	194.469	219.869	245.269	270.689
	0.671875	17.066	42.466	67.866	93.266	118.666	144.066	169.466	194.866	220.266	245.666	271.066
	0.687500	17.482	42.862	68.262	93.662	119.062	144.462	169.862	195.262	220.662	246.162	271.462
	0.703125	17.859	43.259	68.659	94.059	119.459	144.859	170.259	195.659	221.059	246.459	271.859
	0.718750	18.256	43.656	69.056	94.456	119.856	145.256	170.656	196.056	221.456	246.856	372.256
3/4	0.734375 0.750000	18.653 19.050	44.053 44.450	69.453 69.850	94.853 95.250	120.253 120.650	145.653 146.050	171.053 171.450	196.453 196.850	221.853 222.250	247.253 247.650	272.653 273.050
	0.765625	19.050	44.450	70.247	95.230	120.030	146.030	171.450	190.050	222.230	248.047	273.447
	0.781250	19.844	45.244	70.247	96.044	121.047	146.844	172.244	197.644	223.044	248.444	273.844
	0.796875	20.241	45.641	71.014	96.441	121.641	147.241	172.641	198.041	223.441	248.841	274.241
	0.812500	20.638	46.038	71.438	96.838	122.238	147.638	173.038	198.438	223.838	249.238	274.638
	0.828125	21.034	46.434	71.834	97.234	122.634	148.034	173.434	198.834	224.234	249.634	275.034
	0.843750	21.431	46.831	72.231	97.631	123.031	148.431	173.831	199.231	224.631	250.031	275.431
	0.859375	21.828	47.228	72.628	98.028	123.428	148.828	174.228	199.628	225.028	250.428	275.828
7/8	0.875000	22.225	47.625	73.025	98.425	123.825	149.225	174.625	200.025	225.425	250.825	276.225
	0.890625	22.622	48.022	73.422	98.822	124.222	149.622	175.022	200.022	225.822	251.222	276.622
	0.906250	23.019	48.419	73.819	99.219	124.619	150.019	175.419	200.819	226.219	251.619	277.019
	0.921875 0.937500	23.416 23.812	48.816 49.212	74.216 74.612	99.616 100.012	125.016 125.412	150.416 150.812	175.816 176.212	201.216 201.612	226.616 227.012	252.016 252.412	277.416 277.812
	0.937500	24.209	49.212	75.009	100.012	125.412	150.812	176.212	201.612	227.012	252.412	278.209
	0.968750	24.209	50.006	75.406	100.409	126.206	151.209	177.009	202.009	227.409	252.809	278.606
	0.984375	25.003	50.403	75.803	101.203	126.603	152.003	177.403	202.400	228.203	253.603	279.003
55/04	0.007010	20.000	00.700	70.000	101.200	120.000	102.000	177.400	202.000	220.200	200.000	270.000

		TM
	\ L_	

										1	″ = 25.4 mm
Ir	nches	11	12	13	14	15	16	17	18	19	20
Fraction	Decimal number					mm					
0	0.0000	279.400	304.800	330.200	355.600	381.000	406.400	431.800	457.200	482.600	508.000
1/16	0.0625	280.988	306.388	331.788	357.188	382.588	407.988	433.388	458.788	484.188	509.588
1/8	0.1250	282.575	307.975	333.375	358.775	384.175	409.575	434.975	460.375	485.775	511.175
3/16	0.1875	284.162	309.562	334.962	360.362	385.762	411.162	436.562	461.962	487.362	512.762
1/4	0.2500	285.750	311.150	336.550	361.950	387.350	412.750	438.150	463.550	488.950	514.350
5/16	0.3125	287.338	312.738	338.138	363.538	388.938	414.338	439.738	465.138	490.538	515.938
3/8	0.3750	288.925	314.325	339.725	365.125	390.525	415.925	441.325	466.725	492.125	517.525
7/16	0.4375	290.512	315.912	341.312	366.712	392.112	417.512	442.912	468.312	493.712	519.112
1/2	0.5000	292.100	317.500	342.900	368.300	393.700	419.100	444.500	469.900	495.300	520.700
9/16	0.5625	293.688	319.088	344.488	369.888	395.288	420.688	446.088	471.488	496.888	522.288
5/8	0.6250	295.275	320.675	346.075	371.475	396.875	422.275	447.675	473.075	498.475	523.875
11/16	0.6875	296.864	322.262	347.662	373.062	398.462	423.862	449.262	474.662	500.062	525.462
3/4	0.7500	298.450	323.850	349.250	374.650	400.050	425.450	450.850	476.250	501.650	527.050
13/16	0.8125	300.038	325.438	350.838	376.238	401.638	427.038	452.438	477.838	503.238	528.638
7/8	0.8750	301.625	327.025	352.425	377.825	403.225	428.625	454.025	479.425	504.825	530.225
15/16	0.9375	303.212	328.612	354.012	379.412	404.812	430.212	455.612	481.012	506.412	531.812

1" = 25.4 mm

	Inches	21	22	23	24	25	26	27	28	29	30
Fraction	Decimal number					mm					
0	0.0000	533.400	558.800	584.200	609.600	635.000	660.400	685.800	711.200	736.600	762.000
1/16	0.0625	534.988	560.388	585.788	611.188	636.588	661.988	687.388	712.788	738.188	763.588
1/8	0.1250	536.575	561.975	587.375	612.775	638.175	663.575	688.975	714.375	739.775	765.175
3/16	0.1875	538.162	563.562	588.962	614.362	639.762	665.162	690.562	715.962	741.362	766.762
1/4	0.2500	539.750	565.150	590.550	615.950	641.350	666.750	692.150	717.550	742.950	768.350
5/16	0.3125	541.338	566.738	592.138	617.538	642.938	668.338	693.738	719.138	744.538	769.938
3/8	0.3750	542.925	568.325	593.725	619.125	644.525	669.925	695.325	720.725	746.125	771.525
7/16	0.4375	544.512	569.912	595.312	620.712	646.112	671.512	696.912	722.312	747.712	773.112
1/2	0.5000	546.100	571.500	596.900	622.300	647.700	673.100	698.500	723.900	749.300	774.700
9/16	0.5625	547.688	573.088	598.488	623.488	649.288	674.688	700.088	725.488	750.888	776.288
5/8	0.6250	549.275	574.675	600.075	625.475	650.875	676.275	701.675	727.075	752.475	777.875
11/16	0.6875	550.862	576.262	601.662	627.062	652.462	677.862	703.262	728.662	754.062	779.462
3/4	0.7500	552.450	577.850	603.250	628.650	654.050	679.450	704.850	730.250	755.650	781.050
13/16	0.8125	554.038	579.438	604.838	630.238	655.638	681.038	706.438	731.838	757.238	782.638
7/8	0.8750	555.625	581.025	606.425	631.825	657.225	682.625	708.025	733.425	758.825	784.225
15/16	0.9375	557.212	582.612	608.012	633.412	658.812	684.212	709.612	735.012	760.412	785.812

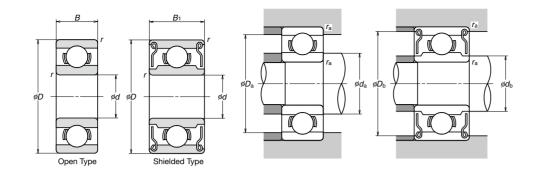
1" = 25.4 mm

	Inc	hes	31	32	33	34	35	36	37	38	39	40
	Fraction De	ecimal number					mm					
	0	0.0000	787.400	812.800	838.200	863.600	889.000	914.400	939.800	965.200	990.600	1016.000
	1/16	0.0625	788.988	814.388	839.788	865.188	890.588	915.988	941.388	966.788	992.188	1017.588
	1/8	0.1250	790.575	815.975	841.375	866.775	892.175	917.575	942.975	968.375	993.775	1019.175
	3/16	0.1875	792.162	817.562	842.962	868.362	893.762	919.162	944.562	969.962	995.362	1020.762
	1/4	0.2500	793.750	819.150	844.550	869.950	895.350	920.750	946.150	971.550	996.950	1022.350
	5/16	0.3125	795.338	820.738	846.138	871.538	896.938	922.338	947.738	973.138	998.538	1023.938
	3/8	0.3750	796.925	822.325	847.725	873.125	898.525	923.925	949.325	974.725	1000.125	1025.525
	7/16	0.4375	798.512	823.912	849.312	874.712	900.112	925.512	950.912	976.312	1001.712	1027.112
	1/2	0.5000	800.100	825.500	850.900	876.300	901.700	927.100	952.100	977.900	1003.300	1028.700
	9/16	0.5625	801.688	827.088	852.488	877.888	903.288	928.688	954.088	979.488	1004.888	1030.288
	5/8	0.6250	803.275	828.675	854.075	879.475	904.875	930.275	955.675	981.075	1006.475	1031.875
_	11/16	0.6875	804.862	830.262	855.662	881.062	906.462	931.862	957.262	982.662	1008.062	1033.462
	3/4	0.7500	806.450	831.850	857.250	882.650	908.050	933.450	958.850	984.250	1009.650	1035.050
	13/16	0.8125	808.038	833.438	858.838	884.238	909.638	935.038	960.438	985.838	1011.238	1036.638
	7/8	0.8750	809.625	835.025	860.425	885.825	911.225	936.625	962.025	987.425	1012.825	1038.225
	15/16	0.9375	811.212	836.612	862.012	887.412	912.812	938.212	963.621	989.012	1014.412	1039.812

13. Viscosity Conversion Table

Kinematic viscosity	universa	rbolt Il second econds)	1 se	wood cond conds)	Engler viscosity F
mm²/s	100°F	210°F	50°C	100°C	(degrees
2	32.6	32.8	30.8	31.2	1.14
3	36.0	36.3	33.3	33.7	1.22
4	39.1	39.4	35.9	36.5	1.31
5	42.3	42.6	38.5	39.1	1.40
6	45.5	45.8	41.1	41.7	1.48
7	48.7	49.0	43.7	44.3	1.56
8	52.0	52.4	46.3	47.0	1.65
9	55.4	55.8	49.1	50.0	1.75
10	58.8	59.2	52.1	52.9	1.84
11	62.3	62.7	55.1	56.0	1.93
12	65.9	66.4	58.2	59.1	2.02
13	69.6	70.1	61.4	62.3	2.12
14	73.4	73.9	64.7	65.6	2.22
15	77.2	77.7	68.0	69.1	2.32
16	81.1	81.7	71.5	72.6	2.43
17	85.1	85.7	75.0	76.1	2.54
18	89.2	89.8	78.6	79.7	2.64
19	93.3	94.0	82.1	83.6	2.76
20	97.5	98.2	85.8	87.4	2.87
21	102	102	89.5	91.3	2.98
22	106	107	93.3	95.1	3.10
23	110	111	97.1	98.9	3.22
24	115	115	101	103	3.34
25	119	120	105	107	3.46
26	123	124	109	111	3.58
27	128	129	112	115	3.70
28	132	133	116	119	3.82
29	137	138	120	123	3.95
30	141	142	124	127	4.07
31	145	146	128	131	4.20
32	150	150	132	135	4.32
33	154	155	136	139	4.45
34	159	160	140	143	4.57

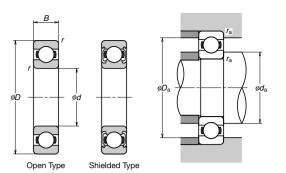
Kinematic viscosity	universa	bolt second	1 se	wood	Engle viscos
mm²/s	•	econds)	`	conds)	E (degre
	100°F	210°F	50°C	100°C	
35	163	164	144	147	4.70
36	168	170	148	151	4.83
37	172	173	153	155	4.96
38	177	178	156	159	5.0
39	181	183	160	164	5.2
40	186	187	164	168	5.3
41	190	192	168	172	5.4
42	195	196	172	176	5.5
43	199	201	176	180	5.7
44	204	205	180	185	5.8
45	208	210	184	189	5.9
46	213	215	188	193	6.1
47	218	219	193	197	6.2
48	222	224	197	202	6.3
49	227	228	201	206	6.50
50	231	233	205	210	6.6
55	254	256	225	231	7.2
60	277	279	245	252	7.9
65	300	302	266	273	8.5
70	323	326	286	294	9.2
75	346	349	306	315	9.89
80	371	373	326	336	10.5
85	394	397	347	357	11.2
90	417	420	367	378	11.8
95	440	443	387	399	12.5
100	464	467	408	420	13.2
120	556	560	490	504	15.8
140	649	653	571	588	18.4
160	742	747	653	672	21.1
180	834	840	734	757	23.7
200	927	933	816	841	26.3
250	1 159	1 167	1 020	1 051	32.9
300	1 391	1 400	1 224	1 241	39.5


Remark: 1 mm²/s = 1 cSt

14. Hardness Conversion Table

Brinell hardnes	Rockwell	hardness
Difficilitataties	A scale	B scale

				Rockwell	hardness	
Rockwell C scale		Brinell h	ardness	A scale	B scale	
hardness (1 471N) (150 kgf)	Vickers hardness	Standard ball	Tungsten carbide ball	Load 588N (60 kgf) Brale indenter	Load 980.7N (100 kgf) 1.588 mm Ball (1/16 in)	Shore hardness
68	940	_	_	85.6	_	97
67	900	_	_	85.0	_	95
66	865	_	_	84.5	_	92
65	832	_	739	83.9	_	91
64	800	_	722	83.4	_	88
63	772	_	705	82.8	_	87
62	746	_	688	82.3	_	85
61	720	_	670	81.8	_	83
60	697	_	654	81.2	_	81
59	674	_	634	80.7	_	80
58	653	_	615	80.1	_	78
57	633	_	595	79.6	_	76
56	613	_	577	79.0	_	75
55	595	_	560	78.5	_	74
54	577	_	543	78.0	_	72
53	560	_	525	77.4	_	71
52	544	500	512	76.8	_	69
51	528	487	496	76.3	_	68
50	513	475	481	75.9	_	67
49	498	464	469	75.2	_	66
48	484	451	455	74.7	_	64
47	471	442	443	74.1	_	63
46	458	432	432	73.6	_	62
45	446	421	421	73.1	_	60
44	434	409	409	72.5	_	58
43	423	400	400	72.0	_	57
42	412	390	390	71.5	_	56
41	402	381	381	70.9	_	55
40	392	371	371	70.4	_	54
39	382	362	362	69.9	_	52


Doolawell		Brinell hardness		Rockwel		
Rockwell C scale		Dillicii i	araricss	A scale	B scale	
hardness (1 471N) (150 kgf)	Vickers hardness	Standard ball	Tungsten carbide ball	Load 588N (60 kgf) Brale indenter	Load 980.7N (100 kgf) 1.588 mm Ball (1/16 in)	Shore hardness
38	372	353	353	69.4	_	51
37	363	344	344	68.9	_	50
36	354	336	336	68.4	(109.0)	49
35	345	327	327	67.9	(108.5)	48
34	336	319	319	67.4	(108.0)	47
33	327	311	311	66.8	(107.5)	46
32	318	301	301	66.3	(107.0)	44
31	310	294	294	65.8	(106.0)	43
30	302	286	286	65.3	(105.5)	42
29	294	279	279	64.7	(104.5)	41
28	286	271	271	64.3	(104.0)	41
27	279	264	264	63.8	(103.0)	40
26	272	258	258	63.3	(102.5)	38
25	266	253	253	62.8	(101.5)	38
24	260	247	247	62.4	(101.0)	37
23	254	243	243	62.0	100.0	36
22	248	237	237	61.5	99.0	35
21	243	231	231	61.0	98.5	35
20	238	226	226	60.5	97.8	34
(18)	230	219	219	_	96.7	33
(16)	222	212	212	_	95.5	32
(14)	213	203	203	_	93.9	31
(12)	204	194	194	_	92.3	29
(10)	196	187	187	_	90.7	28
(9)	188	179	179	_	89.5	27
(6)	180	171	171	_	87.1	26
(4)	173	165	165	-	85.5	25
(2)	166	158	158	_	83.5	24
(0)	160	152	152	-	81.7	24

Extra-Small Ball Bearings

Bore	Outside		dth	Chamfer dimension	Basic	Load rating	Al	Abutment and fillet dimensions (mm)					
diameter d	diameter <i>D</i>	Open Type B	Shielded Type B ₁	(minimum)	bearing	C _H (reference value)	da	d _b	Da	D _b	r _a		
(mm)	(mm)	(mm)	(mm)	r (mm)	number	(N)		Maximum	Maximum	Minimum	Maximum		
	9	2.5	4	0.1	684	545	4.8	5.2	8.2	8.1	0.1		
	11	4	4	0.15	694	815	5.2	5.6	9.8	9.9	0.15		
4	12	4	4	0.2	604	815	5.6	5.6	10.4	9.9	0.2		
	13	5	5	0.2	624	1 110	5.6	6.0	11.4	11.3	0.2		
	16	5	5	0.3	634	1 470	6.0	7.5	14.0	13.8	0.3		
	11	3	5	0.15	685	610	6.2	6.2	9.8	9.9	0.15		
	13	4	4	0.2	695	915	6.6	6.6	11.4	11.2	0.2		
5	14	5	5	0.2	605	1 130	6.6	6.9	12.4	12.2	0.2		
	16	5	5	0.3	625	1 470	7.0	7.5	14.0	13.8	0.3		
	19	6	6	0.3	635	2 220	7.0	8.5	17.0	16.5	0.3		
	13	3.5	5	0.15	686	920	7.2	7.4	11.8	11.7	0.15		
Ī	15	5	5	0.2	696	1 470	7.6	7.9	13.4	13.3	0.2		
6	17	6	6	0.3	606	1 920	8.0	8.2	15.0	14.8	0.3		
Ī	19	6	6	0.3	626	2 220	8.0	8.5	17.0	16.5	0.3		
Ī	22	7	7	0.3	636	2 800	8.0	10.5	20.0	19.0	0.3		
	14	3.5	5	0.15	687	1 000	8.2	8.5	12.8	12.7	0.15		
	17	5	5	0.3	697	1 370	9.0	10.2	15.0	14.8	0.3		
7	19	6	6	0.3	607	2 220	9.0	9.1	17.0	16.5	0.3		
	22	7	7	0.3	627	2 800	9.0	10.5	20.0	19.0	0.3		
	26	9	9	0.3	637	3 900	9.0	12.8	24.0	22.8	0.3		
	16	4	5	0.2	688	1 370	9.6	10.2	14.4	14.2	0.2		
Ī	19	6	6	0.3	698	1 900	10.0	10.0	17.0	16.5	0.3		
8	22	7	7	0.3	608	2 800	10.0	10.5	20.0	19.0	0.3		
Ī	24	8	8	0.3	628	2 850	10.0	12.0	22.0	20.5	0.3		
	28	9	9	0.3	638	3 900	10.0	12.8	26.0	22.8	0.3		
	17	4	5	0.2	689	1 130	10.6	11.5	15.4	15.2	0.2		
	20	6	6	0.3	699	1 460	11.0	12.0	18.0	17.2	0.3		
9	24	7	7	0.3	609	2 850	11.0	12.0	22.8	20.5	0.3		
	26	8	8	0.6	629	3 900	11.0	12.8	24.0	22.8	0.3		
	30	10	10	0.6	639	4 350	13.0	16.1	26.0	25.6	0.6		
9.525	22.225	5.558	7.142	0.4	R6	2 830	12.6	11.9	19.2	20.0	0.4		

Remarks Load rating C_H—load ratings of stainless steel bearings. Used to calculate an limiting load P of SPACEA™ bearing from P/C_H. This value cannot be applied to calculation of rolling fatigue life of bearings with solid lubrication and coated bearings.

Standard Bearings

Bore diameter	Outside diameter	Width of Open/	Chamfer dimension	Basic bearing Load rating C _H		Abut	ment and fille	t dimensions	Abutment and fillet dimensions (mm)					
d	D	Shielded Type B	(minimum) <i>r</i>	number	(reference value)	d	a	$D_{\rm a}$	$r_{\rm a}$					
(mm)	(mm)	(mm)	(mm)		(N)	Minimum	Maximum	Maximum	Maximum					
	19	5	0.3	6800	1 460	12	12	17	0.3					
	22	6	0.3	6900	2 290	12	12.5	20	0.3					
10	26	8	0.3	6000	3 900	12	13	24	0.3					
	30	9	0.6	6200	4 350	14	16	26	0.6					
	35	11	0.6	6300	6 900	14	16.5	31	0.6					
	21	5	0.3	6801	1 630	14	14	19	0.3					
	24	6	0.3	6901	2 460	14	14.5	22	0.3					
12	28	8	0.3	6001	4 350	14	15.5	26	0.3					
	32	10	0.6	6201	5 800	16	17	28	0.6					
	37	12	1	6301	8 250	17	18	32	1					
	24	5	0.3	6802	1 760	17	17	22	0.3					
•	28	7	0.3	6902	3 700	17	17	26	0.3					
15	32	9	0.3	6002	4 750	17	19	30	0.3					
·	35	11	0.6	6202	6 500	19	20.5	31	0.6					
	42	13	1	6302	9 700	20	22.5	37	1					
	26	5	0.3	6803	2 240	19	19	24	0.3					
	30	7	0.3	6903	3 900	19	19.5	28	0.3					
17	35	10	0.3	6003	5 100	19	21.5	33	0.3					
	40	12	0.6	6203	8 150	21	23.5	36	0.6					
	47	14	1	6303	11 600	22	25.5	42	1					
	32	7	0.3	6804	3 400	22	22	30	0.3					
	37	9	0.3	6904	5 400	22	24	35	0.3					
20	42	12	0.6	6004	7 950	24	25.5	38	0.6					
	47	14	1	6204	10 900	25	26.5	42	1					
	52	15	1.1	6304	13 500	26.5	28	45.5	1					
	37	7	0.3	6805	3 800	27	27	35	0.3					
25	42	9	0.3	6905	5 950	27	28.5	40	0.3					
25	47	12	0.6	6005	8 550	29	30	43	0.6					
	52	15	1	6205	11 900	30	32	47	1					
20	55	13	1	6006	11 300	35	36.5	50	1					
30	62	16	1	6206	16 500	35	38.5	57	1					
O.F.	62	14	1	6007	13 600	40	41.5	57	1					
35	72	17	1.1	6207	21 800	41.5	44.5	65.5	1					
40	68	15	1	6008	14 200	45	47.5	63	1					
40	80	18	1.1	6208	24 800	46.5	50.5	73.5	1					
45	75	16	1	6009	17 800	50	53.5	70	1					

Remarks Load rating C_H—load ratings of stainless steel bearings. Used to calculate an limiting load P of SPACEA™ bearing from P/C_H.

Unit: µm

16. T	Tolera	nces fo	r Sha	ft Diar	neters	;									
classi	meter fication nm) incl.	Single-plane mean-bore diameter deviation (Class 0)	d6	e6	f6	g5	g6	h5	h6	h7	h8	h9	h10	js5	js6
3	6	0 - 8	- 30 - 38	- 20 - 28	- 10 - 18	- 4 - 9	- 4 - 12	0 - 5	0 - 8	0 - 12	0 - 18	0 - 30	0 - 48	± 2.5	± 4
6	10	0 - 8	- 40 - 49	- 25 - 34	- 13 - 22	- 5 -11	- 5 - 14	0 - 6	0 - 9	0 - 15	0 - 22	0 - 36	0 - 58	± 3	± 4.5
10	18	0 - 8	- 50 - 61	- 32 - 43	- 16 - 27	- 6 -14	- 6 - 17	0 - 8	0 –11	0 - 18	0 - 27	0 - 43	0 - 70	± 4	± 5.5
18	30	0 - 10	- 65 - 78	- 40 - 53	- 20 - 33	- 7 -16	- 7 - 20	0 - 9	0 -13	0 - 21	0 - 33	0 - 52	0 - 84	± 4.5	± 6.5
30	50	0 - 12	- 80 - 96	- 50 - 66	- 25 - 41	- 9 -20	- 9 - 25	0 –11	0 –16	0 - 25	0 - 39	0 - 62	0 –100	± 5.5	± 8
50	80	0 - 15	-100 -119	- 60 - 79	- 30 - 49	-10 -23	- 10 - 29	0 -13	0 –19	0 - 30	0 - 46	0 - 74	0 -120	± 6.5	± 9.5
80	120	0 - 20	-120 -142	- 72 - 94	- 36 - 58	-12 -27	- 12 - 34	0 -15	0 –22	0 - 35	0 - 54	0 - 87	0 -140	± 7.5	±11
120	180	0 - 25	-145 -170	- 85 -110	- 43 - 68	-14 -32	- 14 - 39	0 -18	0 -25	0 - 40	0 - 63	0 -100	0 -160	± 9	±12.5
180	250	0 - 30	–170 –199	-100 -129	- 50 - 79	-15 -35	- 15 - 44	0 -20	0 –29	0 - 46	0 - 72	0 -115	0 –185	±10	±14.5
250	315	0 - 35	-190 -222	-110 -142	- 56 - 88	-17 -40	- 17 - 49	0 -23	0 -32	0 - 52	0 - 81	0 -130	0 –210	±11.5	±16
315	400	0 - 40	–210 –246	–125 –161	- 62 - 98	–18 –43	- 18 - 54	0 -25	0 -36	0 - 57	0 - 89	0 –140	0 -230	±12.5	±18
400	500	0 - 45	-230 -270	-135 -175	- 68 -108	-20 -47	- 20 - 60	0 -27	0 –40	0 - 63	0 - 97	0 –155	0 -250	±13.5	±20
500	630	0 - 50	-260 -304	-145 -189	- 76 -120	_	- 22 - 66	_	0 –44	0 - 70	0 -110	0 –175	0 -280	_	±22
630	800	0 - 75	-290 -340	-160 -210	- 80 -130	_	- 24 - 74	-	0 –50	0 - 80	0 -125	0 –200	0 -320	-	±25
800	1 000	0 –100	-320 -376	-170 -226	- 86 -142	_	- 26 - 82	_	0 –56	0 - 90	0 –140	0 –230	0 -360	-	±28
1 000	1 250	0 -125	-350 -416	-195 -261	- 98 -164	-	- 28 - 94	_	0 -66	0 -105	0 -165	0 –260	0 -420	-	±33
1 250	1 600	0 –160	-390 -468	-220 -298	-110 -188	_	- 30 -108	_	0 -78	0 -125	0 –195		0 -500	-	±39
1 600	2 000	0 –200	-430 -522	-240 -332	-120 -212	_	- 32 -124	-	0 -92	0 -150	0 -230	0 –370		-	±46

													Unit: µm
j5	j6	j7	k5	k6	k7	m5	m6	n6	p6	r6	r7	classi	neter fication nm)
												over	incl.
+ 3	+ 6 - 2	+ 8 - 4	+ 6 + 1	+ 9 + 1	+ 13 + 1	+ 9 + 4	+ 12 + 4	+ 16 + 8	+ 20 + 12	+ 23 + 15	+ 27 + 15	3	6
+ 4	+ 7 - 2	+10	+ 7 + 1	+ 10 + 1	+ 16 + 1	+12 + 6	+ 15 + 6	+ 19 + 10	+ 24 + 15	+ 28 + 19	+ 34 + 19	6	10
+ 5 - 3	+ 8 - 3	+12 - 6	+ 9 + 1	+ 12 + 1	+ 19 + 1	+15 + 7	+ 18 + 7	+ 23 + 12	+ 29 + 18	+ 34 + 23	+ 41 + 23	10	18
+ 5	+ 9	+13 - 8	+11 + 2	+ 15 + 2	+ 23 + 2	+17 + 8	+ 21 + 8	+ 28 + 15	+ 35 + 22	+ 41 + 28	+ 49 + 28	18	30
+ 6 - 5	+11 - 5	+15 -10	+13 + 2	+ 18 + 2	+ 27 + 2	+20 + 9	+ 25 + 9	+ 33 + 17	+ 42 + 26	+ 50 + 34	+ 59 + 34	30	50
+ 6	+12	+18	+15	+ 21	+ 32	+24	+ 30	+ 39	+ 51	+ 60 + 41	+ 71 + 41	50	65
- 7	- 7	-12	+ 2	+ 2	+ 2	+11	+ 11	+ 20	+ 32	+ 62 + 43	+ 73 + 43	65	80
+ 6	+13	+20	+18	+ 25	+ 38	+28	+ 35	+ 45	+ 59	+ 73 + 51	+ 86 + 51	80	100
- 9	- 9	-15	+ 3	+ 3	+ 3	+13	+ 13	+ 23	+ 37	+ 76 + 54	+ 89 + 54	100	120
										+ 88 + 63	+103 + 63	120	140
+ 7 –11	+14 -11	+22 -18	+21 + 3	+ 28 + 3	+ 43 + 3	+33 +15	+ 40 + 15	+ 52 + 27	+ 68 + 43	+ 90 + 65	+105 + 65	140	160
				. •						+ 93 + 68	+108 + 68	160	180
										+106 + 77	+123 + 77	180	200
+ 7 -13	+16 -13	+25 -21	+24 + 4	+ 33 + 4	+ 50 + 4	+37 +17	+ 46 + 17	+ 60 + 31	+ 79 + 50	+109 + 80	+126 + 80	200	225
									. 55	+113 + 84	+130 + 84	225	250
+ 7	.10	. 00	+27	+ 36	+ 56	+43	+ 52	+ 66	+ 88	+126 + 94	+146 + 94	250	280
-16	±16	±26	+ 4	+ 4	+ 4	+20	+ 20	+ 34	+ 56	+130 + 98	+150 + 98	280	315
+ 7	±18	+29	+29	+ 40	+ 61	+46	+ 57	+ 73	+ 98	+144 +108	+165 +108	315	355
+ 7 –18	±10	-28	+ 4	+ 4	+ 4	+21	+ 21	+ 37	+ 62	+150 +114	+171 +114	355	400
+ 7	±20	+31	+32	+ 45	+ 68	+50	+ 63	+ 80	+108	+166 +126	+189 +126	400	450
-20	120	-32	+ 5	+ 5	+ 5	+23	+ 23	+ 40	+ 68	+172 +132	+195 +132	450	500
				+ 44	+ 70		+ 70	+ 88	+122	+194 +150	+220 +150	500	560
			_	0	0		+ 26	+ 44	+ 78	+199 +155	+225 +155	560	630
_	_	_	_	+ 50	+ 80	_	+ 80	+100	+138	+225 +175	+255 +175	630	710
				0	0		+ 30	+ 50	+ 88	+235 +185	+265 +185	710	800
_	_	_	_	+ 56	+ 90	_	+ 90	+112	+156	+266 +210	+300 +210	800	900
				0	0		+ 34	+ 56	+100	+276 +220	+310 +220	900	1 000
_	_	_	_	+ 66	+105	_	+106	+132	+186	+316 +250	+355 +250	1 000	1 120
				0	0		+ 40	+ 66	+120	+326 +260	+365 +260	1 120	1 250
_	_	_	_	+ 78	+125	_	+126	+156	+218	+378 +300	+425 +300	1 250	1 400
				0	0		+ 48	+ 78	+140	+408 +330	+455 +330	1 400	1 600
_	_	_	_	+ 92	+150	_	+150	+184	+262	+462 +370	+520 +370	1 600	1 800
				0	0		+ 58	+ 92	+170	+492 +400	+550 +400	1 800	2 000

SPACEA

17. Tolerances for Housing Bore Diameters

- 1	Init:	ım

classi	meter fication nm)	Single-plane mean-outside diameter deviation	E6	F6	F7	G6	G7	H6	H7	H8	J6	J7	JS6	JS7
over	incl.	(Class 0) ⊿Dmp												
10	18	0 - 8	+ 43 + 32	+ 27 + 16	+ 34 + 16	+ 17 + 6	+ 24 + 6	+ 11	+ 18	+ 27	+ 6 - 5	+10 - 8	± 5.5	± 9
18	30	0 – 9	+ 53 + 40	+ 33 + 20	+ 41 + 20	+ 20 + 7	+ 28 + 7	+ 13	+ 21 0	+ 33	+ 8 - 5	+12 - 9	± 6.5	±10.5
30	50	0 - 11	+ 66 + 50	+ 41 + 25	+ 50 + 25	+ 25 + 9	+ 34 + 9	+ 16	+ 25 0	+ 39	+10 - 6	+14 -11	± 8	±12.5
50	80	0 - 13	+ 79 + 60	+ 49 + 30	+ 60 + 30	+ 29 + 10	+ 40 + 10	+ 19 0	+ 30	+ 46	+13 - 6	+18 -12	± 9.5	±15
80	120	0 - 15	+ 94 + 72	+ 58 + 36	+ 71 + 36	+ 34 + 12	+ 47 + 12	+ 22	+ 35 0	+ 54 0	+16 - 6	+22 -13	± 11	±17.5
120 150	150 180	0 - 18 0 - 25	+110 + 85	+ 68 + 43	+ 83 + 43	+ 39 + 14	+ 54 + 14	+ 25 0	+ 40	+ 63	+18 - 7	+26 -14	± 12.5	±20
180	250	0 - 30	+129 +100	+ 79 + 50	+ 96 + 50	+ 44 + 15	+ 61 + 15	+ 29	+ 46 0	+ 72 0	+22 - 7	+30 -16	± 14.5	±23
250	315	0 - 35	+142 +110	+ 88 + 56	+108 + 56	+ 49 + 17	+ 69 + 17	+ 32	+ 52 0	+ 81	+25 - 7	+36 -16	± 16	±26
315	400	0 - 40	+161 +125	+ 98 + 62	+119 + 62	+ 54 + 18	+ 75 + 18	+ 36	+ 57 0	+ 89	+29 - 7	+39 -18	± 18	±28.5
400	500	0 - 45	+175 +135	+108 + 68	+131 + 68	+ 60 + 20	+ 83 + 20	+ 40	+ 63 0	+ 97 0	+33	+43 -20	± 20	±31.5
500	630	0 - 50	+189 +145	+120 + 76	+146 + 76	+ 66 + 22	+ 92 + 22	+ 44	+ 70 0	+110	_	_	± 22	±35
630	800	0 - 75	+210 +160	+130 + 80	+160 + 80	+ 74 + 24	+104 + 24	+ 50 0	+ 80	+125 0	_	_	± 25	±40
800	1 000	0 -100	+226 +170	+142 + 86	+176 + 86	+ 82 + 26	+116 + 26	+ 56 0	+ 90 0	+140	_	_	± 28	± 45
1 000	1 250	0 -125	+261 +195	+164 + 98	+203 + 98	+ 94 + 28	+133 + 28	+ 66	+105 0	+165 0	_	-	± 33	±52.5
1 250	1 600	0 -160	+298 +220	+188 +110	+235 +110	+108 + 30	+155 + 30	+ 78 0	+125 0	+195 0	_	_	± 39	±62.5
1 600	2 000	0 –200	+332 +240	+212 +120	+270 +120	+124 + 32	+182 + 32	+ 92	+150 0	+230	_	-	± 46	±75
2 000	2 500	0 -250	+370 +260	+240 +130	+305 +130	+144 + 34	+209 + 34	+110	+175 0	+280	_	_	± 55	±87.5

Unit: µn												
ameter cation (mm)		P7	P6	N7	N6	N5	M7	M6	M5	K7	K6	K5
incl.	over											
18	10	- 11 - 29	- 15 - 26	- 5 - 23	- 9 - 20	- 9 -17	0 - 18	- 4 - 15	- 4 -12	+ 6 - 12	+ 2 - 9	+ 2 - 6
30	18	- 14 - 35	- 18 - 31	- 7 - 28	- 11 - 24	-12 -21	0 - 21	- 4 - 17	- 5 -14	+ 6 - 15	+ 2 - 11	+ 1 - 8
50	30	- 17 - 42	- 21 - 37	- 8 - 33	- 12 - 28	-13 -24	0 - 25	- 4 - 20	- 5 -16	+ 7 - 18	+ 3 - 13	+ 2 - 9
80	50	- 21 - 51	- 26 - 45	- 9 - 39	- 14 - 33	-15 -28	0 - 30	- 5 - 24	- 6 -19	+ 9 - 21	+ 4 - 15	+ 3 -10
120	80	- 24 - 59	- 30 - 52	- 10 - 45	- 16 - 38	-18 -33	0 - 35	- 6 - 28	- 8 -23	+ 10 - 25	+ 4 - 18	+ 2 -13
180	120	- 28 - 68	- 36 - 61	- 12 - 52	- 20 - 45	-21 -39	0 - 40	- 8 - 33	- 9 -27	+ 12 - 28	+ 4	+ 3
250	180	- 33 - 79	- 41 - 70	- 14 - 60	- 22 - 51	-25 -45	0 - 46	- 8 - 37	-11 -31	+ 13 - 33	+ 5 - 24	+ 2 -18
316	250	- 36 - 88	- 47 - 79	- 14 - 66	- 25 - 57	-27 -50	0 - 52	- 9 - 41	-13 -36	+ 16 - 36	+ 5 - 27	+ 3 -20
400	315	- 41 - 98	- 51 - 87	- 16 - 73	- 26 - 62	-30 -55	0 - 57	- 10 - 46	-14 -39	+ 17 - 40	+ 7 - 29	+ 3 -22
500	400	- 45 -108	- 55 - 95	- 17 - 80	- 27 - 67	-33 -60	0 - 63	- 10 - 50	-16 -43	+ 18 - 45	+ 8 - 32	+ 2 -25
630	500	- 78 -148	- 78 -122	- 44 -114	- 44 - 88	_	- 26 - 96	- 26 - 70	_	0 - 70	0 - 44	_
800	630	- 88 -168	- 88 -138	- 50 -130	- 50 -100	_	- 30 -110	- 30 - 80	-	0 - 80	0 - 50	_
1 000	800	–100 –190	-100 -156	- 56 -146	- 56 -112	_	- 34 -124	- 34 - 90	_	0 - 90	0 - 56	_
1 250	1 000	-120 -225	-120 -186	- 66 -171	- 66 -132	_	- 40 -145	- 40 -106	_	0 -105	0 - 66	-
1 600	1 250	-140 -265	-140 -218	- 78 -203	- 78 -156	_	- 48 -173	- 48 -126	_	0 -125	0 - 78	_
2 000	1 600	-170 -320	-170 -262	- 92 -242	- 92 -184	_	- 58 -208	- 58 -150	_	0 -150	0 - 92	_
2 500	2 000	–195 –370	-195 -305	-110 -285	-110 -220	_	- 68 -243	- 68 -178	_	0 -175	0 –110	_

Specification Inquiry for SPACEA™ Series

To request a specification inquiry, please fill out the following form and contact the nearest NSK office.

Name of company	Name	
Department	Phone	

N	NSK bearing N	No.							
Nominal bearing number,	Other company model No.								
Dimensions	Dimensions	Bore diameter ×	Outside diame	ter × Width	ı (<i>φ</i>	$\times \phi$	×	mm)	
	Type of machi	ne (example: liquid crystal cle	aning equipment, c	oating equipm	ent for se	emiconducto	r, etc.)		
Application									
		1. New design 2. Ex	perience in use	e with simila	ar equi	pment	3. Maintena	ance	
	Current	Name of manufacture	rer: (), Mc	odel: (-)
	bearing	2. Unknown							
	Specifications	1. Material							
	Specifications	2. Lubricant							
Problems/ Issues	Bearing durability	(hours or months	Poor lubric Contamina Fracture	tion with fo	reign p		s/outgassing 5. Lubrica 9. Poor ro	ant leaka	usting ge
	Required operating life	() hours or m	onths					
	Details of problems/ issues								
	Normal atmosphere, vacuum	Normal atmosphere From normal atmosphere Vacuum (degree of vacuum)	phere up to vac	cuum (degre	ee of va	acuum =	Pa)		
		Water environment	1. High-humid 4. De-ionized		. Water		3. Water-	immerse	d)
	Corrosion resistance	2. Corrosive liquids	Acid () A	lkali () Other	()
Operating environment	rosiotarios	3. Corrosive gases	F-based (Br-based ()	CI-based Other (I ()	
	Cleanliness	Particle emissions (0 Grease-free 4.	Class: No grease leak) 2. kage 5.	Outga: Other	ssing ())	
	High temperature	Bearing temperature (°C)	Ambient	temper	ature (°C)		
	Non- magnetism	Non-magnetic (relation 2. Completely non-magnetic properties)				1 or less)			
	Speed	Normal () min ⁻¹	Max () min ⁻¹		
Operating conditions	Bearing load	Radial (Other load information	N)	Axial (N))	
Comments									

Qingdao, Shandong, China (266071)

GUANGZHOU

CHANGSHA

LUOYANG

CHONGOING

CHENGDU

JIANGSU

XI'AN

P: +86-532-5568-3877 F: +86-532-5568-3876

Tianhe District, Guangzhou, China (510620)

P: +86-20-3817-7800 F: +86-20-3786-4501

P: +86-731-8571-3100 F: +86-731-8571-3255

P: +86-379-6069-6188 F: +86-379-6069-6180

P: +86-29-8765-1896 F: +86-29-8765-1895

P: +86-23-6806-5310 F: +86-23-6806-5292

P: +86-28-8528-3680 F: +86-28-8528-3690

P: +86-512-5796-3000 F: +86-512-5796-3300

China (400039)

NSK CHINA SALES CO., LTD.

Room 2302, TaiKoo Hui Tower 1, No.385 Tianhe Road,

Room 1048, 10/F, Zhongtian Plaza, No.766 WuyiRoad, Changsha, Hunan, China (410005)

Room 1108, Fangda Hotel, 6 XiYuan Road, LuoYang HeNan, China (471003)

Room 1007, B Changan Metropolls Center88 Nanguanzheng Steet, Xi'an, Shanxi,

Room 2306, Unit B, No.137, Keyuan 2nd Road, Jiulongpo District, Chonqing,

Room1117, Lippo Tower, No.62 North Kehua Road, Chengdu, Sichuan, China (610041)

No.8 NSK Rd., Huaqiao Economic Development Zone, Kunshan, Jiangsu, China (215332)

worldv	vide Sales Offices		P: Phone F: Fax ☆: Head Office
NSK LTD	HEADQUARTERS, TOKYO, JAPAN	NSK HONG K	DNG LTD.
	Nissei Bldg., 1-6-3 Ohsaki, Shinagawa-ku, Tokyo 141-8560, Japan	HONG KONG ☆	Suite 705, 7th Floor, South Tower, World Finance Centre, Harbour City, T.S.T,
INDUSTRIAL MA	CHINERY BUSINESS DIVISION-HEADQUARTERS		Kowloon, Hong Kong, China
	P: +81-3-3779-7227 F: +81-3-3779-7644		P: +852-2739-9933 F: +852-2739-9323
AUTOMOTIVE BI	USINESS DIVISION-HEADQUARTERS	SHENZHEN	Room 624-626, 6/F, Kerry Center, Renminnan Road, Shenzhen, Guangdong, China
	P: +81-3-3779-7189 F: +81-3-3779-7917		P: +86-755-25904886 F: +86-755-25904883
● Africa		Taiwan:	
South Africa:			PRECISION CO., LTD.
	AFRICA (PTY) LTD.	TAIPEI ☆	11F., No.87, Song Jiang Rd., Jhongshan District, Taipei City 104, Taiwan P: +886-2-2509-3305 F: +886-2-2509-1393
SANDTON	25 Galaxy Avenue, Linbro Business Park, Sandton 2146, South Africa	TAICHUNG	3F2, No. 540, Sec. 3, Taiwan Blvd., Xitun Dist., Taichung City 407, Taiwan
	P: +27-11-458-3600 F: +27-11-458-3608	TAICHONG	P: +886-4-2708-3393 F: +886-4-2708-3395
●Asia an	d Oceania	TAINAN	5F. No.8, Daye 1st Rd., Southern Taiwan Science Park, Tainan City 741,
Australia:			Taiwan
NSK AUSTRA	LIA PTY. LTD.		P: +886-6-505-5861 F: +886-6-505-5061
MELBOURNE ☆	100 Logis Boulevard, Dandenong South, Victoria, 3175, Australia		TECHNOLOGY CO., LTD.
	P: +61-3-9765-4400 F: +61-3-9764-8304	TAIPEI ☆	11F., No.87, Song Jiang Rd., Jhongshan District, Taipei City 104, Taiwan
SYDNEY	Suite A315, 20 Lexington Drive, Bella Vista, New South Wales, 2153, Australia	TA10111110	P: +886-2-2509-3305 F: +886-2-2509-1393
	P: +61-2-8843-8100 F: +61-2-9893-8406	TAICHUNG	10F-3, No.925, Sec.4, Taiwan Blvd., Xitun Dist., Taichung City 407,
BRISBANE	1/69 Selhurst Street, Coopers Plains, Queensland 4108, Australia P: +61-7-3347-2600 F: +61-7-3345-5376		Taiwan P: +886-4-2358-2945 F: +886-4-2358-7682
PERTH	P: +61-7-3347-2600 F: +61-7-3345-5376 Unit 1, 71 Tacoma Circuit, Canning Vale, Western Australia 6155, Australia	TAINAN	5F. No.8, Daye 1st Rd., Southern Taiwan Science Park, Tainan City 741,
PERIN	P: +61-8-9256-5000 F: +61-8-9256-1044	IAINAN	Taiwan
New Zealand:			P: +886-6-505-5861 F: +886-6-505-5061
NSK NEW ZE		India:	
AUCKLAND	3 Te Apunga Place, Mt. Wellington, Auckland 1060, New Zealand		LES CO.PVT.LTD.
, 10 0112 1112	P: +64-9-276-4992 F: +64-9-276-4082	CHENNAI ☆	6th Floor, Bannari Amman Towers, No.29 Dr. Radhakrishnan Salai, Mylapore,
China:			Chennai-600 004 Tamil Nadu, India
	HAI) TRADING CO., LTD.		P: +91-44-2847-9600 F: +91-44-2847-9601
JIANGSU	No.8 NSK Rd., Huaqiao Economic Development Zone, Kunshan, Jiangsu, China (215332)	GURGAON	Unit No-202, 2nd Floor, Block-A, Iris Tech Park, Sector-48, Sohna Road,
	P: +86-512-5796-3000 F: +86-512-5796-3300		Gurgaon-122018, Haryana, India
NSK (CHINA)	INVESTMENT CO., LTD.		P: +91-124-4104-530 F: +91-124-4104-532
JIANGSU ☆	No.8 NSK Rd., Huaqiao Economic Development Zone, Kunshan, Jiangsu, China (215332)	MUMBAI	321, 'A' Wing, Ahura Centre, 82, Mahakali Caves Road, Andheri (East), Mumba
	P: +86-512-5796-3000 F: +86-512-5796-3300		-400 093, India
BEIJING	Room 2116, Beijing Fortune Bldg., 5 Dong San Huan Bei Lu, Chao Yang District,		P: +91-22-2838-7787 F: +91-22-2838-5191
	Beijing, China (100004)	Indonesia:	NECIA
TIAN 1111	P: +86-10-6590-8161 F: +86-10-6590-8166	PT. NSK INDO JAKARTA	
TIAN JIN	Room 06, 09F The Exchange Tower 2, No. 189 NanJing Road, Heping District,	JANANTA	Summitmas II, 6th Floor, JI. Jend Sudirman Kav. 61-62, Jakarta 12190, Indonesi P: +62-21-252-3458 F: +62-21-252-3223
	Tianjin, China (300050) P: +86-22-8319-5030 F: +86-22-8319-5033	Korea:	1. +02-21-232-0430
CHANGCHUN	Room 2311, Building A, Zhongyin Building, 727 Xi'an Road, Changchun, Jilin,	NSK KOREA C	en itn
OHAIGOHOIG	China (130061)	SEOUL	Posco Center (West Wing) 9F, 440, Teheran-ro, Gangnam-gu, Seoul, 135-777, Korea
	P: +86-431-8898-8682 F: +86-431-8898-8670		P: +82-2-3287-0300 F: +82-2-3287-0345
SHENYANG	Room 1101, China Resources Building, No. 286 Qingnian Street,	Malaysia:	
	Heping District, Shenyang Liaoning, China (110004)	-	S (MALAYSIA) SDN. BHD.
	P: +86-24-2334-2868 F: +86-24-2334-2058	SHAH ALAM ☆	No. 2, Jalan Pemaju, U1/15, Seksyen U1, Hicom Glenmarie Industrial Park,
DALIAN	Room 1805 Xiwang Tower, No.136 Zhongshan Road,		40150 Shah Alam, Selangor, Malaysia
	Zhongshan District, Dalian, Liaoning, China (116001)		P: +60-3-7803-8859 F: +60-3-7806-5982
	P: +86-411-8800-8168 F: +86-411-8800-8160	PRAI	No.24, Jalan kikik, Taman Inderawasih, 13600 Prai, Penang, Malaysia
NANJING	Room A1 22F, Golden Eagle International Plaza, No.89 Hanzhong Road, Nanjing,		P: +60-4-3902275 F: +60-4-3991830
	Jiangsu, China (210029)	JOHOR BAHRU	88 Jalan Ros Merah 2/17, Taman Johor Jaya, 81100 Johor Bahru, Johor, Malaysi
=	P: +86-25-8472-6671 F: +86-25-8472-6687	IDOLL	P: +60-7-3546290 F: +60-7-3546291
FUZHOU	Room 1801-1811, B1#1A Class Office Building, Wanda Plaza, No.8 Aojiang Road,	IPOH	Gr. Floor, 89 Jalan Bendahara, 31650 Ipoh, Perak, Malaysia
	Fuzhou, China (350009)	District :	P: +60-5-2555000 F: +60-5-2553373
14/1 II 14 h /	P: +86-591-8380-1030 F: +86-591-8380-1225	Philippines:	THE ATIME OFFICE
WUHAN	Room 1110, New World International Trade Tower I, No.568 Jianshe Road, Wuhan,		ENTATIVE OFFICE 8th Floor The Salcedo Towers 169 H.V. dela Costa St.,
	Hubei, China (430000)	MANILA	Salcedo Village Makati City, Philippines 1227
QINGDAO	P: +86-27-8556-9630 F: +86-27-8556-9615 Room 802, Farglory International Plaza, No.26 Xianggang Zhong Road, Shinan District,		P: +63-2-893-9543 F: +63-2-893-9173
GINGDAO	About 602, Fargiory International Plaza, No.26 Manggang Zhong Road, Shinan District,	Cingonoro	

Singapore:

SINGAPORE

Thailand:

BANGKOK

Vietnam:

HANO

NSK VIETNAM CO., LTD.

NSK REPRESENTATIVE OFFICE

NSK INTERNATIONAL (SINGAPORE) PTE LTD.

NSK SINGAPORE (PRIVATE) LTD.

NSK BEARINGS (THAILAND) CO.,LTD.

Hanoi, Vietnam

P: +65-6496-8000 F: +65-6250-5845

P: +65-6496-8000 F: +65-6250-5845

P: +66-2320-2555 F: +66-2320-2826

P: +84-4-3955-0159 F: +84-4-3955-0158

P: +84-8-3822-7907 F: +84-8-3822-7910

HO CHI MINH CITY Suite 307, Metropolitan Building, 235 Dong Khoi Street, District 1,HCMC, Vietnam

238A, Thomson Road, #24-01/05, Novena Square Tower A, Singapore 307684

238A, Thomson Road, #24-01/05, Novena Square Tower A, Singapore 307684

26 Soi Onnuch 55/1 Pravet Subdistrict, Pravet District, Bangkok 10250, Thailand

Techno Center, Room 204-205, Thang Long Industrial Park, Dong Anh District,

Worldwide Sales Offices

Europe

United Kingdom

NSK EUROPE LTD. (EUROPEAN HEADQUARTERS)

MAIDENHEAD Belmont Place, Belmont Road, Maidenhead, Berkshire SL6 6TB, U.K.

P: +44-1628-509-800 F: +44-1628-509-808

NSK UK LTD.

NEWARK Northern Road, Newark, Nottinghamshire NG24 2JF, U.K.

P: +44-1636-605-123 F: +44-1636-605-000

France:

NSK FRANCE S.A.S.

PARIS Quartier de l'Europe, 2 Rue Georges Guynemer, 78283 Guyancourt, France

P: +33-1-30-57-39-39 F: +33-1-30-57-00-01

Germany

NSK DEUTSCHLAND GMBH

DUSSELDORF ☆ Harkortstrasse 15, D-40880 Ratingen, Germany P: +49-2102-4810 F: +49-2102-4812-290

STUTTGART Liebknechtstrasse 33, D-70565 Stuttgart-Vaihingen, Germany P: +49-711-79082-0 F: +49-711-79082-289

WOLFSBURG Tischlerstrasse 3, D-38440 Wolfsburg, Germany P: +49-5361-27647-10 F: +49-5361-27647-70

Italy:

NSK ITALIA S.P.A.

MILANO Via Garibaldi 215, Garbagnate Milanese (Milano) 20024, Italy

P: +39-299-5191 F: +39-299-025778

Netherlands:

NSK EUROPEAN DISTRIBUTION CENTRE B.V.

De Kroonstraat 38, 5048 AP Tilburg, Netherlands TILBURG

P: +31-13-4647647 F: +31-13-4647648

NSK REPRESENTATIVE OFFICE

Ul. Migdalowa 4/73, 02-796, Warsaw, Poland WARSAW P: +48-22-645-1525 F: +48-22-645-1529

Russia:

NSK POLSKA SP. Z O.O.

SAINT-PETERSBURG Office I 703, Bldg 29, 18th Line of Vasilievskiy Ostrov, Saint-Petersburg, Russia, 199178

P: +7-812-332-5071 F: +7-812-332-5072

NSK SPAIN S.A.

BARCELONA

C/Tarragona, 161 Cuerpo Bajo, 2a Planta, 08014, Barcelona, Spain

NSK RULMANLARI ORTA DOGU TIC. LTD. STI.

19 Mayis Mah. Ataturk Cad., Ulya Engin Is Merkezi No: 68 Kat. 6, P.K.: 34734,

Kozyatagi-Istanbul, Turkey

P: +90-216-477-7111 F: +90-216-477-7174

United Arab Emirates:

NSK BEARINGS GULF TRADING CO.

DUBAI JAFZA View 19, Floor 24 Office LB192402/3, PO Box 262163, DownTown Jebel Ali,

Dubai, UAE

P: +971-4-804-8207 F: +971-4-884-7227

North and South America

NSK AMERICAS, INC. (AMERICAN HEADQUARTERS)

4200 Goss Road, Ann Arbor, Michigan 48105, U.S.A. ANN ARBOR P: +1-734-913-7500 F: +1-734-913-7511

NSK CORPORATION

United States of America:

ANN ARBOR 4200 Goss Road, Ann Arbor, Michigan 48105, U.S.A.

P: +1-734-913-7500 F: +1-734-913-7511

NSK PRECISION AMERICA, INC.

3450 Bearing Drive, Franklin, Indiana 46131, U.S.A. FRANKLIN ☆

P: +1-317-738-5000 F: +1-317-738-5050

780 Montague Expressway, Suite 505, San Jose, California, 95131, U.S.A. SAN JOSE

P: +1-408-944-9400 F: +1-408-944-9405

NSK LATIN AMERICA, INC.

3470 NW 82nd Avenue Suite 625, Miami FL 33122, U.S.A. MIAMI

P: +1-305-477-0605 F: +1-305-477-0377

Canada:

NSK CANADA INC.

TORONTO ☆ 5585 McAdam Road, Mississauga, Ontario, Canada L4Z 1N4

P: +1-905-890-0740 F: +1-800-800-2788

2150-32E Avenue Lachine, Quebec, Canada H8T 3H7 P: +1-514-633-1220 F: +1-800-800-2788

VANCOUVER 3353 Wayburne Drive, Burnaby, British Columbia, Canada V5G 4L4

P: +1-877-994-6675 F: +1-800-800-2788

Argentina:

NSK ARGENTINA SRL

BUENOS AIRES Garcia del Rio 2477 Piso 7 Oficina "A" (1429) Buenos Aires-Argentina

P: +54-11-4704-5100 F: +54-11-4704-0033

Brazil:

NSK BRASIL LTDA.

SAO PAULO 🜣 Rua 13 de Maio, 1633-14th Andar-Bela Vista-CEP 01327-905 São Paulo, SP, Brazil

P: +55-11-3269-4786 F: +55-11-3269-4720

BELO HORIZONTE Rua Ceara 1431-4th andar-sala 405-Funcionarios Belo Horizonte-MG, Brazil

30150-311

P: +55-31-3274-2591 F: +55-31-3273-4408

JOINVILLE Rua Blumenau 178-sala 910-Centro Joinville-SC Brazil 89204-250 P: +55-47-3422-5445 F: +55-47-3422-2817

PORTO ALEGRE Av. Cristovão Colombo, 1694-sala 202-Floresta Porto Alegre-RS, Brazil 90560 001

P: +55-51-3222-1324 F: +55-51-3222-2599

Av. Conselheiro Aguiar, 2738-6th andar-conj. 604-Boa Viagem Recife-PE, Brazil 51020-020 P: +55-81-3326-3781 F: +55-81-3326-5047

Peru:

NSK PERU S.A.C. LIMA

Av. Caminos del Inca 670, Ofic : # 402, Santiago del Surco, Lima, Perú

P: +51-1-652-3372 F: +51-1-638-0555

Mexico:

NSK RODAMIENTOS MEXICANA, S.A. DE C.V.

MEXICO CITY Av. Presidente Juarez No 2007 Lote 5. Col. San Jeronimo Tenetlacalco

Tlalnepantla Estado de Mexico, Mexico, C.P.54090

P: +52-55-3682-2900 F: +52-55-3682-2937

Av. Ricardo Margain 575, IOS Torre C, Suite 516, Parque Corporativo Santa Engracia, San Pedro Garza Garcia, N.L. Mexico, C.P.66267

P: +52-81-8000-7300 F: +52-81-8000-7095

<As of December 2015> For the latest information, please refer to the NSK website.

www.nsk.com

NSK Ltd. has a basic policy not to export any products or technology designated as controlled items by export-related laws. When exporting the products in this brochure, the laws of the exporting country must be observed. Specifications are subject to change without notice and without any obligation on the part of the manufacturer. Every care has been taken to ensure the accuracy of the data contained in this brochure, but no liability can be accepted for any loss or damage suffered through errors or omissions. We will gratefully acknowledge any additions or corrections.

